(数学模型 §1.4出手角度和出手速度最大偏差估计 球入筐时球心偏前(偏后)的最大距离 D 2 2sin B D 因为y= x tan a-x g 21 2 cos2 y=H-h L(v-gL tan a) x tan a+h-h=0 2y cos a darel gL-v sin a cos a ★出手角度最大偏差估计△ Q sin a cos a △v L(v-gl tan a) ★出手速度最大偏差估计△=84=" Si a cos v△x V的相对偏差为 △ △a tan a g ④O
§1.4 出手角度和出手速度最大偏差估计 球入筐时球心偏前(偏后)的最大距离 2 2sin D d x = − tan 0 2 cos 2 2 2 − x + H − h = v g x y = H − h x L v gL gL v − − = ( tan ) sin cos 2 2 2 2 2 2 cos tan v g 因为 y = x − x sin cos ( tan ) 2 2 gL v L v gL d dx x L − − = = ★ 出手角度最大偏差估计 ★ 出手速度最大偏差估计 v x gL gL v v − = 2 2 sin cos v 的相对偏差为 ( tan ) 2 = − gL v v v d 0 x D
(数学模型 §1.5空气阻力的影响 只考虑水平方向的阻力,且阻力与速度成正比 水平方向的运动为x+kx=0x(0)=0,x(0)= v cos C kt e 解得x() y cos a k 人cosa.t2 x(t)= V CoSa·t y(t)=vsna·t gt 不考虑篮球和篮筐大小,确定球心命中筐心的条件 lycos a.t v cosa·t L=0 vSnc·-8t22 2(H-h)=0
k e x t v −kt − = 1 ( ) cos 只考虑水平方向的阻力,且阻力与速度成正比 2 cos ( ) cos 2 k v t x t v t = − 2 ( ) sin 2 gt y t = v t − 0 2 cos cos 2 − = − L k v t v t ( ) 0 2 sin 2 − − H − h = gt v t §1.5 空气阻力的影响 '' ' x kx + = 0,x(0) = 0, ' x v (0) cos = 不考虑篮球和篮筐大小,确定球心命中筐心的条件 水平方向的运动为 解得
(数学模型 516算法实现和计算结果 ★对不同出手高度的最小出手速度和相应的出手角度 tan a g ,(H-h g 8/, 2v vin=glh-h+vL2+(H-h)2]tan ao g h(m) vum n/s)ao(度) 18 76789526012 19 75985520181 2.0 7.518651.4290 74392508344
h(m) v(m/s) (度) 1.8 7.6789 52.6012 1.9 7.5985 52.0181 2.0 7.5186 51.4290 2.1 7.4392 50.8344 §1.6 算法实现和计算结果 ★ 对不同出手高度的最小出手速度和相应的出手角度 0 [ ( ) ] 2 2 2 v min = g H − h + L + H − h = + − − + ) 2 ( 2 tan 1 1 2 2 2 2 v gL H h v g gL v gL v 2 0 tan =
(数学模型 ★对不同出手速度和出手高度的出手角度和入射角度 2(H-h+o 2) tan B=tan a 2(H-h) tan a g p(ms)hm)a1(度)a2(度)B1(度)B2(度 1.862.409942792553.876320.9213 1963.114740918855820620.1431 8.0 2.063.728139130057.4941196478 2164.2670374017589615193698 1867.697537.049621726126250 1.968.028836.007563.188412.7753 8.5 2.068.336734.521464.1179130240 2168624433.044464927913.3583 1.871.069734.132767142676550 1971.274932.761467.79748.1663 9.0 2.071.470031.388168.40988.7321 2171656130012768984093472
v(m/s) h (m) (度) (度) (度) (度) 8.0 1.8 1.9 2.0 2.1 62.4099 63.1147 63.7281 64.2670 42.7925 40.9188 39.1300 37.4017 53.8763 55.8206 57.4941 58.9615 20.9213 20.1431 19.6478 19.3698 8.5 1.8 1.9 2.0 2.1 67.6975 68.0288 68.3367 68.6244 37.5049 36.0075 34.5214 33.0444 62.1726 63.1884 64.1179 64.9279 12.6250 12.7753 13.0240 13.3583 9.0 1.8 1.9 2.0 2.1 71.0697 71.2749 71.4700 71.6561 34.1327 32.7614 31.3881 30.0127 67.1426 67.7974 68.4098 68.9840 7.6550 8.1663 8.7321 9.3472 1 2 1 2 ★对不同出手速度和出手高度的出手角度和入射角度 = + − − + ) 2 ( 2 tan 1 1 2 2 2 2 v gL H h v g gL v L 2(H h) tan tan − = −
(数学模型 ★出手角度和出手速度最大偏差 △ogL-v2 sin a cos a lp≈8L-v2 sin a cos a △ v△x L(v-gL tan a) gL △ h(m)a(度)v(ms) △c△w 62409980-0.75620.05281.2610.6597 1867.69758.50.56030.069440.827608167 7106979.0-0.45700.08030.643108925 63728180-0.71000.06011.114007511 2068.33678.5 0.54110.07340.79180.8640 71.47009.0 -0.44630.08320.624409243
h(m) (度) v(m/s) 1.8 62.4099 8.0 67.6975 8.5 71.0697 9.0 -0.7562 0.0528 -0.5603 0.0694 -0.4570 0.0803 1.2261 0.6597 0.8276 0.8167 0.6431 0.8925 2.0 63.7281 8.0 68.3367 8.5 71.4700 9.0 -0.7100 0.0601 -0.5411 0.0734 -0.4463 0.0832 1.1140 0.7511 0.7918 0.8640 0.6244 0.9243 ★ 出手角度和出手速度最大偏差 v v v x L v gL gL v − − = ( tan ) sin cos 2 2 v x gL gL v v − = 2 2 sin cos