例:证明变分原理设该体系的H本征方程Hy=Ey,其本征值从小到大依次为E≤E≤E≤...;相应的本征函数为yo,yi,…构成正交归一完备集(yi,则满足体系边界条件的任意状态Φ(已归一化)均可以用展开为Φ=Zc=[o(H-E.)pdt=[oHpdt-E[opdtJ(Ecwi j(Eew, dt-E(Ecvi)(Ecw, JdZZcic,E,o,-EEZcic,o,cic(E,-Eo)≥0Jo'HpdtZE
例:证明变分原理 设该体系的Ĥ本征方程Ĥ = E,其本征值从小到大依次为E0 E1 E2 .;相应的本征函数为0 , 1 , .构成正交归一完备集{i },则满足体 系边界条件的任意状态(已归一化)均可以用展开为 = cii * * * 0 0 ˆ ˆ = − = − ( ) H E d H d E d * * * * 0 ˆ i i j j i i j j i j i j c H c d E c c d = − * * 0 * 0 ( ) 0 i j i ij i j ij i j i j i i i i c c E E c c c c E E = − = − * 0 ˆ H E d
例:在一维势箱体系,用抛物线函数yx)=ax2+bx+c验证变分理量子力学公设Iy(0)=c = 0y(x)=a(x2-Ix)y()=aP+bl= 0d'y(x)ha"n?1[y (x)Hy(x)dxdxy(x)dx?2m6mma"sd'y(x)-lx)’dx =y (x)y(x)dx =dx=ay(xdx?30h?5h?W=4元2ml28ml2
例:在一维势箱体系,用抛物线函数(x) = ax2+bx+c验证变分理 量子力学公设I (0) = c = 0 (l) = al2+bl = 0 (x) = a(x 2−lx) 2 2 2 2 2 5 4 8 h h W ml ml = 2 2 2 2 2 2 3 * 2 2 0 0 0 d ( ) ˆ ( ) ( )d ( ) d ( )d 2 d 6 l l l x a a l x H x x x x x lx x m x m m = − = − − = 2 2 5 * 2 2 2 2 0 0 0 d ( ) ( ) ( )d ( ) d ( ) d d 30 l l l x a l x x x x x a x lx x x = = − =
变分法用变分原理可求体系近似基态波函数和基态能量W:选择时使其包含若干可调节的参数c;W是c, C2,., C,的函数W=W(ci, C2...., Cn)[o'Hodt≥EW参数c2Jo'odt参数C能量最低时的c通过求awIac=0,awIac=0,..,awIac,=0,确定Ci,C2,……, c,的取值,使Φ所表示的体系状态为最佳称为尝试变分函数(trialvariationfunction)
变分法 通过求W/c1 = 0, W/c2 = 0, ., W/cn = 0, 确定c1 , c2 , ., cn的取值, 使 所表示的体系状 态为最佳 用变分原理可求体系近似基态波函数和基态能量W: 选择时使其包含若干可调节的参数ci W是c1 , c2 , ., cn的函数W = W(c1 , c2 , ., cn ) * 0 * H d ˆ W E d = 称为尝试变分函数(trial variation function) 能量最低时的ci
例:用尝试变分函数=e-cr,计算氢原子基态能量021d?aa20721H-indar00sinad1rdiasinAd"dp["sinedel"dt=dr2c22cr=4元/(c2r2-2cr)e-2ardr=4元44c28c3c几元[w =wdt= 4元 ]Jv'ydt=4元f"re-2adrre-2crdr=C[y'Hydtc?W2Jy'ydtdwW= -1/2c=1C-1=0dc
例:用尝试变分函数= e−cr ,计算氢原子基态能量 1 1 2 ˆ 2 H r = − − 2 2 2 2 2 2 2 2 2 2 1 1 1 d sin sin si d n 2 d d r θ r r r r θ θ θ r θ r r r = + + = + ( ) 2 2 * 2 2 2 2 2 0 0 0 2 2 2 2 3 2 0 d 2 d 2 d e e d d sin d e d d d 2 2 4 2 e d 4 8 4 cr cr cr cr c c r r r r r r c c c r cr r c c c − − − − = + = − = − = − = − * 2 2 0 1 d 4 e dcr r r r c − = = * 2 2 3 0 d 4 e dcr r r c − = = * 2 *ˆ d d 2 H c W c = = − d 1 0 d W c c = − = c = 1 W = −1/2
例:如果He原子中电子采用类氢原子轨道乘积的形式,验证变分原理,若将电荷数Z更改为变量,用变分法求He基态的能级21H, +H,+1H=(-}vi-3+D三r2ri2A1W=[o'Hdt=[H, +H,Hodtri2-JoH,dt+JoH,ddt+Jo-dt=E, +E,+[o"-Q0ri2E =E,=-Z-/2W=-Z2+5Z/8=-2.75a.u.=-74.8eV[odt=(积分略)He基态能量E.为-79.0eV(I=24.6eV,l,=54.4eV)8W>E。比实验值高5.3%
例:如果He原子中电子采用类氢原子轨道乘积的形式,验证变分原理,若 将电荷数Z更改为变量,用变分法求He基态的能级 2 2 1 2 1 2 1 2 12 12 1 1 1 1 ˆ ˆ ˆ 2 2 Z Z H H H r r r r = − − + − − + = + + 1 2 3 1 2 e e Z Zr Zr − − = = * * 1 2 12 * * * * 1 2 1 2 12 12 1 ˆ ˆ ˆ ˆ d d 1 1 ˆ ˆ d d d d W H H H H r H H E E r r = = + + = + + = + + * 12 1 5 d 8 Z r = E1 = E2 = −Z 2 /2 (积分略) W = −Z 2 + 5Z/8 = −2.75 a.u. = −74.8 eV He基态能量E0为−79.0eV(I1 = 24.6 eV,I2 = 54.4 eV) W > E0 比实验值高5.3%