模糊时序与支持向量机建模相结合的PM2.5质量浓度预测

为解决进行PM2.5质量浓度预测中多因素回归模型的不稳定、神经网络模型的过拟合及局部最小等问题,提出应用支持向量机和模糊粒化时间序列相结合的方法,对PM2.5质量浓度未来变化趋势和范围进行预测.根据PM2.5不同季节的日变化周期模式,确定以24 h为周期的粒化窗宽,利用三角型隶属函数对数据样本进行特征提取作为支持向量机的输入,并在k重交叉验证法下采用网格划分寻找出模型的最佳参数.以2013年3月—2014年2月北京市海淀区万柳监测点四个季节PM2.5的1 h质量浓度监测值为样本数据,应用该方法建立PM2.5质量浓度的时间序列预测模型,并在MATLAB平台下应用LIBSVM工具实现计算过程.结果表明,基于模糊粒化时间序列的预测模型,能较好解决PM2.5机理性建模方式下由于影响因素考虑不全而造成的预测结果不稳定,对模糊粒子拟合效果较好.
文件格式:PDF,文件大小:648.63KB,售价:3.24元
文档详细内容(约9页)
点击进入文档下载页(PDF格式)
共9页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录