概華论与款醒硫外 二、随机变量的概念 1.定义 设E是随机试验,它的样本空间是S={}.如 果对于每一个e∈S,有一个实数X(e)与之对应, 这样就得到一个定义在S上的单值实值函数X(e), 称X(e)为随机变量
( ) . ( ), , ( ) , , { }. 称 为随机变量 这样就得到一个定义在 上的单值实值函数 果对于每一个 有一个实数 与之对应 设 是随机试验 它的样本空间是 如 X e S X e e S X e E S e = 二、随机变量的概念 1.定义
概车纶与款理统外 2.说明 ()随机变量与普通的函数不同 随机变量是一个函数,但它与普通的函数有 着本质的差别,普通函数是定义在实数轴上的,而 随机变量是定义在样本空间上的(样本空间的元 素不一定是实数)。 (2)随机变量的取值具有一定的概率规律 随机变量随着试验的结果不同而取不同的值, 由于试验的各个结果的出现具有一定的概率,因 此随机变量的取值也有一定的概率规律. (U
随机变量随着试验的结果不同而取不同的值, 由于试验的各个结果的出现具有一定的概率, 因 此随机变量的取值也有一定的概率规律. (2)随机变量的取值具有一定的概率规律 随机变量是一个函数 , 但它与普通的函数有 着本质的差别 ,普通函数是定义在实数轴上的,而 随机变量是定义在样本空间上的 (样本空间的元 素不一定是实数). 2.说明 (1)随机变量与普通的函数不同