3.2 最小二乘法(OLS)β的最小二乘(OLS)估计公式也可以用下面的方式推导。对估计的回归模型Y=Xβ+左乘一个X,X'Y=X'Xβ+X'a根据(最小二乘)估计的回归函数的性质(4),X'i=0有X'Y=X'Xββ=(X'X)"x'Y高斯一马尔可夫定理:若前述假定条件成立,OLS估计量是最佳线性无偏估计量。βB具有无偏性,最小方差特性,一致性求出β,估计的回归模型写为Y=Xβ+u=Y+a
3.2 最小二乘法(OLS)
2元线性回归模型离差的分解1(f-Y)=itYY = βo + β,X1,+ β2 X2(Y-Y)YXlt
2元线性回归模型离差的分解
110110100100例题3.190908080Dependent Variable:Y70-70Method:Least Squares6060Date:01/31/07Time:20:485050Xtx2Sample:110toLO5870100Includedobservations:1060901107912025013Prob.VariableStd. ErrorCoefficientt-StatisticYX1obsX2589156c113.83430.004928.165574.041612253488X1-8.3553422.290749-3.6474280.0082363760X20.39720.1800720.1997270.901589468706573778R-squared0.88313678.00000Meandependent var6985840.84974619.57890Adjusted R-squaredS.D.dependent var798491S.E.of regression7.5892907.134678Akaike infocriterion867882Sum squared resid403.18137.225454Schwarzcriterion93108100-32.6733926.44931Log likelihoodF-statistic108851200.000546Durbin-Watson stat1.767143Prob(F-statistic)Y:某商品需求量X1:该商品价格= 113.83 - 8.36 X1 + 0.18 X2X2:消费者平均收入(0.9)(4.0)(-3.6)(第4版第54页)R2=0.88. F-26.4. T-10
例题3.1 Y: 某商品需求量 X1:该商品价格 X2:消费者平均收入 = 113.83 - 8.36 X1 + 0.18 X2 (4.0) (-3.6) (0.9) R2 =0.88, F=26.4, T=10 (第4版第54页)
Boβ=OLS法矩阵具体运算过程,例3.1B=(X'X)-X'YB2n956585384816076317068611111111111117873A87675675946374638498556537060707860788491821001205663841209100XJ3x103x109198482786100108388120510x1079478060780-0.092945113.834313.77320-1.04889660390449043804380-8.3553-1.0488960.0911070.006326794449064932-0.09294564932669900.0063260.0006930.1801ProbVariableCoefficientStdErrort-Statisticc0.0049113.834328.165574.041612X1-8.3553422.290749-3.6474280.0082X20.1800720.1997270.9015890.3972
OLS法矩阵具体运算过程,例3.1
3.3 最小二乘 (OLS)估计量的特性1.β的分布(第4版第58页)E(β)= E[(X'X)"X'Y I = E[(X'X)"X'(Xβ+ u)]= β+ (X'X)"X'E(u)= βVar(β)= E[(β-β)(β-β)")= E[(X'X)"X'uu'X(X'X)"I=E[(X'X)"x'α"IX(X'X)"l = α (X'X)"因为u~N(0, 1) ,Y~N(Xβ, ),β=(X'X)X'Yβ是Y的线性函数,所以β~N(β, α? (X'X)")
3.3 最小二乘(OLS)估计量的特性 (第4版第58页)