第2章一阶逻辑 通常我们用小写的英文字母a、b、c(可加下标) 等表示个体。这样,"小王是学生"可符号化为F(a), 其中a表示小王。若用b表示小李,则F(b)就表示"小 李是学生"。若用c1表示2,用c2表示6,则G(c1,c2) 就表示"2整除6" 这里,a、b、c1、c2均是具体的个体,称为个体常 元。一般地,我们用F(x)表示"x是学生",其中的x 称为个体变元(简称变元,亦称个体词)。类似,我 们也可用G(x,y)表示"x整除y
第2章 一阶逻辑 通常我们用小写的英文字母a、b、c(可加下标) 等表示个体。这样, "小王是学生"可符号化为F(a), 其中a表示小王。若用b表示小李,则F(b)就表示"小 李是学生" 。若用c1表示2,用c2表示6,则G(c1,c2) 就表示"2整除6" 。 这里,a、b、c1、c2均是具体的个体,称为个体常 元。一般地,我们用F(x)表示"x是学生" ,其中的x 称为个体变元(简称变元,亦称个体词)。类似,我 们也可用G(x,y)表示"x整除y"
第2章一阶逻辑 我们称由谓词符和变元符组成的符号串为命题函 数。之所以称为命题函数,是因为命题函数不是命题, 只有谓词为常元并将其中的变元代以具体的个体后, 才能构成命题。例如:"G(x,y):x整除y。"并不是 命题,但若取a:2,b:6,则G(a,a),G(a,b) 以及G(b,a)均是命题,前两个是真命题,第三个是 假命题。G(a,a)、G(a,b)等称为0元谓词,它 们不含个体变元,0元谓词即命题
第2章 一阶逻辑 我们称由谓词符和变元符组成的符号串为命题函 数。之所以称为命题函数,是因为命题函数不是命题, 只有谓词为常元并将其中的变元代以具体的个体后, 才能构成命题。例如:"G(x,y):x整除y。 "并不是 命题,但若取a:2,b:6,则G(a,a),G(a,b) 以及G(b,a)均是命题,前两个是真命题,第三个是 假命题。G(a,a)、G(a,b)等称为0元谓词,它 们不含个体变元,0元谓词即命题
第2章一阶逻辑 【例21.1】将下列语句形式化为谓词逻辑中的命 题或命题函数 (1)小王是二年级大学生 (2)小王是李老师的学生。 (3)如果x≤y且yxx,则x=yo 解 (1)令F(x):x是大学生;G(x):x是二年级 的;a:小王。则原句形式化为: F(a)∧G(a)
第2章 一阶逻辑 【例2.1.1】 将下列语句形式化为谓词逻辑中的命 题或命题函数。 (1)小王是二年级大学生。 (2)小王是李老师的学生。 (3)如果x≤y且y≤x,则x=y。 解 (1)令F(x):x是大学生;G(x):x是二年级 的;a:小王。则原句形式化为: F(a)∧G(a)
第2章一阶逻辑 (2)令F(x,y):x是y的学生;a:小王;b:李 老师。则原句形式化为: F Ca, b) (3)令F(x,y):xy;G(x,y):x=y。式化 为 (F(x,y)∧F(y,x))→G(x,y)
第2章 一阶逻辑 (2)令F(x,y):x是y的学生;a:小王;b:李 老师。则原句形式化为: F(a,b)。 (3)令F(x,y):x≤y;G(x,y):x=y。式化 为: (F(x,y)∧F(y,x))→G(x,y)
第2章一阶逻辑 前两句均是命题,第三句因为含有变元所以是命 题函数。但实际上我们知道,只要将x、y限制在数的 范围内,第三句是定理,是永真的。这就涉及到了个 体域。在简单命题中,常有一些表示数量关系的词语, 诸如"所有的"、"有一些"等等,用来表示论域中的全 体或部分个体,在谓词逻辑中,我们用量词把它们形 式化
第2章 一阶逻辑 前两句均是命题,第三句因为含有变元所以是命 题函数。但实际上我们知道,只要将x、y限制在数的 范围内,第三句是定理,是永真的。这就涉及到了个 体域。在简单命题中,常有一些表示数量关系的词语, 诸如"所有的" 、 "有一些"等等,用来表示论域中的全 体或部分个体,在谓词逻辑中,我们用量词把它们形 式化