TABLE OF CONTENTS (continued)4.10.1General.654.10.2Borehole Dilatometer...664.10.3BoreholeJack.674.10.4.67In-situ Direct Shear Testing4.11GEOPHYSICALTESTING..684.12LABORATORYSOILTESTING744.12.1..74Introduction4.12.2.74Quality Assurance for Laboratory Testing4.12.2.1..74SampleTracking4.12.2.2..78Sample Storage.4.12.2.3.78Sample Handling....784.12.2.4Specimen Selection..4.12.3..79Effects of Sample Disturbance.4.12.4.82LaboratoryIndexTestsforSoils.4.12.4.1..82General4.12.4.2.82Moisture Content....834.12.4.3Unit Weight...834.12.4.4Atterberg Limits4.12.4.5Particle Size Distribution...864.12.4.6..87LaboratoryClassification.4.12.4.7.87SpecificGravity4.12.4.8..87Organic Content.4.12.4.9..88ElectroChemicalClassificationTests4.12.5..88LaboratoryPerformanceTestsforSoils4.12.5.1..8General.4.12.5.2Consolidation...89..924.12.5.3Soil Strength..994.12.5.4Permeability4.13102LABORATORYROCKTESTSV
TABLE OF CONTENTS (continued) v 4.10.1 General.65 4.10.2 Borehole Dilatometer.66 4.10.3 Borehole Jack.67 4.10.4 In-situ Direct Shear Testing .67 4.11 GEOPHYSICAL TESTING . 68 4.12 LABORATORY SOIL TESTING. 74 4.12.1 Introduction.74 4.12.2 Quality Assurance for Laboratory Testing .74 4.12.2.1 Sample Tracking .74 4.12.2.2 Sample Storage .78 4.12.2.3 Sample Handling.78 4.12.2.4 Specimen Selection.78 4.12.3 Effects of Sample Disturbance.79 4.12.4 Laboratory Index Tests for Soils.82 4.12.4.1 General.82 4.12.4.2 Moisture Content .82 4.12.4.3 Unit Weight.83 4.12.4.4 Atterberg Limits.83 4.12.4.5 Particle Size Distribution .86 4.12.4.6 Laboratory Classification.87 4.12.4.7 Specific Gravity .87 4.12.4.8 Organic Content.87 4.12.4.9 Electro Chemical Classification Tests .88 4.12.5 Laboratory Performance Tests for Soils .88 4.12.5.1 General.88 4.12.5.2 Consolidation .89 4.12.5.3 Soil Strength.92 4.12.5.4 Permeability .99 4.13 LABORATORY ROCK TESTS. 102
TABLE OF CONTENTS (continued)4.13.1102Introduction4.13.2.104Laboratory Testing of Rock.1044.13.2.1Point-Load Strength Test.4.13.2.2.105UnconfinedCompressiveStrengthof IntactRockCore4.13.2.3..106Elastic Moduli of Intact Rock Core..4.13.2.4Laboratory Direct Shear Test106108CHAPTER 55.1INTRODUCTION1085.2INTERPRETATIONOFSUBSURFACESTRATIGRAPHY1085.2.1General..1085.2.2..108Soil Classification by Soil Samplingand Drilling5.2.3.112Soil Classification by Cone Penetration Testing5.2.4.117Soil Classification using the Flat-Plate Dilatometer..5.2.5118Generating a Subsurface Profile5.3IN-SITUSTRESSSTATE....1235.3.1.123General5.3.2Overburden Stresses.1235.3.3.124Horizontal Stresses.5.4125CONSOLIDATIONPROPERTIESOFSOIL5.4.1..125General5.4.2.125Laboratory Consolidation Tests.5.4.2.1.125General5.4.2.2...126Soil Parameters from Laboratory Consolidation Tests.5.4.2.3.126SelectionofSamplesforLaboratoryConsolidationTesting...1285.4.2.4Evaluation of o,'from Laboratory Consolidation Tests5.4.2.5Evaluationof CandC..1305.4.2.6Laboratory Evaluation of cy1315.4.2.7..134Evaluationof Cae5.4.3Evaluationofo,from In-situTest Methods136vi
TABLE OF CONTENTS (continued) vi 4.13.1 Introduction.102 4.13.2 Laboratory Testing of Rock .104 4.13.2.1 Point-Load Strength Test .104 4.13.2.2 Unconfined Compressive Strength of Intact Rock Core.105 4.13.2.3 Elastic Moduli of Intact Rock Core .106 4.13.2.4 Laboratory Direct Shear Test.106 CHAPTER 5 . 108 5.1 INTRODUCTION. 108 5.2 INTERPRETATION OF SUBSURFACE STRATIGRAPHY. 108 5.2.1 General.108 5.2.2 Soil Classification by Soil Sampling and Drilling.108 5.2.3 Soil Classification by Cone Penetration Testing .112 5.2.4 Soil Classification using the Flat-Plate Dilatometer.117 5.2.5 Generating a Subsurface Profile .118 5.3 IN-SITU STRESS STATE. 123 5.3.1 General.123 5.3.2 Overburden Stresses.123 5.3.3 Horizontal Stresses.124 5.4 CONSOLIDATION PROPERTIES OF SOIL. 125 5.4.1 General.125 5.4.2 Laboratory Consolidation Tests.125 5.4.2.1 General.125 5.4.2.2 Soil Parameters from Laboratory Consolidation Tests.126 5.4.2.3 Selection of Samples for Laboratory Consolidation Testing.126 5.4.2.4 Evaluation of σp′ from Laboratory Consolidation Tests.128 5.4.2.5 Evaluation of Cc and Cr.130 5.4.2.6 Laboratory Evaluation of cv .131 5.4.2.7 Evaluation of Cαε .134 5.4.3 Evaluation of σp′ from In-situ Test Methods.136
TABLE OF CONTENTS (continued)5.4.4140Evaluation of chfrom CPTuDissipation Data5.4.5.142Selection of Design Values for Consolidation Analyses5.5GENERALSTRESS-STRAINANDSTIFFNESSPROPERTIES1465.5.1.146Background5.5.2Settlement Analysis for Soils...1475.5.3Method to Evaluate Equivalent Elastic Modulus..1485.5.4..151Evaluation of Shear Wave Velocity.5.5.4.1.151General5.5.4.2.151Field Measurements of Shear Wave Velocity5.5.5.154Correlations for Small-Strain Shear Modulus..5.5.6155Evaluation of Modulus Degradation Value5.5.7..156Summary5.6.156SHEARSTRENGTHPROPERTIESOFSOIL5.6.1Introduction.1565.6.2.159Fundamental Concepts of Soil Shear Strength5.6.2.1.159Drained versus Undrained Loading5.6.2.2..160Drained Stress-Strain-Strength Behavior..5.6.2.3..162Undrained Stress-Strain-Strength Behavior5.6.2.4EffectiveStressParameters..1635.6.2.5...167Total Stress Parameters..5.6.3.167Relevance of Design Applications to Soil Shear Strength Evaluation5.6.4...168Laboratory Testing Methods for Evaluating Soil Shear Strength.5.6.4.1..168Selection of Laboratory Testing Method5.6.4.2.169Triaxial Testing5.6.4.3...175Direct Shear Testing ...5.6.4.4..178Unconfined Compression Testing..5.6.4.5..179Relevance of Laboratory Strength Tests toField Conditions.5.6.5..180Undrained Shear Strength from In-situ Tests.5.6.6184DrainedFrictionAngleofGranularSoilsfromIn-situTests.vii
TABLE OF CONTENTS (continued) vii 5.4.4 Evaluation of ch from CPTu Dissipation Data.140 5.4.5 Selection of Design Values for Consolidation Analyses .142 5.5 GENERAL STRESS-STRAIN AND STIFFNESS PROPERTIES . 146 5.5.1 Background.146 5.5.2 Settlement Analysis for Soils.147 5.5.3 Method to Evaluate Equivalent Elastic Modulus.148 5.5.4 Evaluation of Shear Wave Velocity.151 5.5.4.1 General.151 5.5.4.2 Field Measurements of Shear Wave Velocity .151 5.5.5 Correlations for Small-Strain Shear Modulus.154 5.5.6 Evaluation of Modulus Degradation Value .155 5.5.7 Summary.156 5.6 SHEAR STRENGTH PROPERTIES OF SOIL . 156 5.6.1 Introduction.156 5.6.2 Fundamental Concepts of Soil Shear Strength .159 5.6.2.1 Drained versus Undrained Loading .159 5.6.2.2 Drained Stress-Strain-Strength Behavior.160 5.6.2.3 Undrained Stress-Strain-Strength Behavior.162 5.6.2.4 Effective Stress Parameters.163 5.6.2.5 Total Stress Parameters.167 5.6.3 Relevance of Design Applications to Soil Shear Strength Evaluation .167 5.6.4 Laboratory Testing Methods for Evaluating Soil Shear Strength.168 5.6.4.1 Selection of Laboratory Testing Method .168 5.6.4.2 Triaxial Testing.169 5.6.4.3 Direct Shear Testing .175 5.6.4.4 Unconfined Compression Testing.178 5.6.4.5 Relevance of Laboratory Strength Tests to Field Conditions.179 5.6.5 Undrained Shear Strength from In-situ Tests .180 5.6.6 Drained Friction Angle of Granular Soils from In-situ Tests.184
TABLEOFCONTENTS(continued)5.6.7Selection of Total Stress Parameters (su)for Undrained Strength Design Analyses....1875.6.8..189SelectionofEffectiveStressParameters(Φ',c')forDesignAnalyses..1895.7HYDRAULICCONDUCTIVITYPROPERTIESOFSOIL5.7.1.189Introductio5.7.2..190Laboratory Output/Data Reduction.5.7.3191Correlation Methods5.7.4.193InterpretationMethods195CHAPTER 66.1INTRODUCTION1956.2ROCK MASSCLASSIFICATION.1966.2.1.196Description of Rock Masses6.2.2.200CoreRecoveryandRockQualityDesignation6.2.3...202CSIR Classification..6.3ROCKUNIAXIALCOMPRESSIVESTRENGTH.2046.4.204ROCKDEFORMATIONMODULUSVALUES6.4.1..204Intact Rock Modulus6.4.2.206Rock Mass Modulus6.4.2.1..206MethodBasedOnRockMassRating.6.4.2.2MethodBased onRQD.2076.4.2.3..208Use of In situ Tests to Evaluate Rock Mass Modulus6.4.3.211Selectionof RockDeformation ModulusforDesign6.5.211ROCK SHEAR STRENGTH6.5.1..211Mohr-Coulomb Materials6.5.2.213Shear Strength Of Discontinuities.2136.5.2.1General...2136.5.2.2Friction Angleof Rock Surfaces..6.5.2.3.214Surface Roughness6.5.2.4.216Measurement of Surface Roughness6.5.2.5.217Discontinuity Infilling.vili
TABLE OF CONTENTS (continued) viii 5.6.7 Selection of Total Stress Parameters (su) for Undrained Strength Design Analyses.187 5.6.8 Selection of Effective Stress Parameters (φ′, c′) for Design Analyses .189 5.7 HYDRAULIC CONDUCTIVITY PROPERTIES OF SOIL. 189 5.7.1 Introduction.189 5.7.2 Laboratory Output/Data Reduction.190 5.7.3 Correlation Methods .191 5.7.4 Interpretation Methods.193 CHAPTER 6 . 195 6.1 INTRODUCTION. 195 6.2 ROCK MASS CLASSIFICATION . 196 6.2.1 Description of Rock Masses .196 6.2.2 Core Recovery and Rock Quality Designation.200 6.2.3 CSIR Classification.202 6.3 ROCK UNIAXIAL COMPRESSIVE STRENGTH . 204 6.4 ROCK DEFORMATION MODULUS VALUES . 204 6.4.1 Intact Rock Modulus.204 6.4.2 Rock Mass Modulus .206 6.4.2.1 Method Based On Rock Mass Rating.206 6.4.2.2 Method Based on RQD.207 6.4.2.3 Use of In situ Tests to Evaluate Rock Mass Modulus .208 6.4.3 Selection of Rock Deformation Modulus for Design .211 6.5 ROCK SHEAR STRENGTH. 211 6.5.1 Mohr-Coulomb Materials .211 6.5.2 Shear Strength Of Discontinuities .213 6.5.2.1 General.213 6.5.2.2 Friction Angle of Rock Surfaces.213 6.5.2.3 Surface Roughness.214 6.5.2.4 Measurement of Surface Roughness.216 6.5.2.5 Discontinuity Infilling.217
TABLEOF CONTENTS (continued)6.5.2.6..218Effect of Water on Shear Strength.2226.5.2.7LaboratoryDirect ShearTesting.6.5.3.223Shear StrengthOfFracturedRockMasses..2236.5.3.1General.2236.5.3.2Strength Determination by Back Analysis of Failures.6.5.3.3.224Hoek-Brown StrengthCriteriaforFractured Rock Masses.6.5.4Selection of Rock Shear Strength forDesign..227229CHAPTER 77.1229INTRODUCTION7.2LOESS....2307.2.1.230Identificationof Loess7.2.2.231Issues Related to SubsurfaceExploration in Loess7.2.3..232Laboratory Strength Testing of Loess..7.2.4.232Evaluationof CollapsePotential7.3.233EXPANSIVE SOILS.7.3.1.233Identificationof ExpansiveSoils7.3.2.235Evaluation of Expansion (Swell) Potential7.3.3...236Shear Strength Evaluation of Expansive Soils.7.4.236ORGANICSOILSANDPEAT7.4.1..236Introduction.7.4.2.237Identification of Organic Soils and Peat7.4.3Issues Related to Subsurface Exploration and Sampling of Organic Soils and Peat...2387.4.4..238Shear Strength of Organic Soils andPeats..7.4.5.239Compressibilityof Organic SoilsandPeats.7.5..240COLLUVIUMANDTALUS7.5.1..240Identification of Colluvium and Talus7.5.2..241Issues Related to SubsurfaceExplorationand Testing inColluvium7.5.3...241Issues Related to SubsurfaceExploration and Testing inTalus.7.5.4.242Compressibility of Colluvium and Talus.ix
TABLE OF CONTENTS (continued) ix 6.5.2.6. Effect of Water on Shear Strength.218 6.5.2.7 Laboratory Direct Shear Testing.222 6.5.3 Shear Strength Of Fractured Rock Masses .223 6.5.3.1 General.223 6.5.3.2 Strength Determination by Back Analysis of Failures .223 6.5.3.3 Hoek-Brown Strength Criteria for Fractured Rock Masses.224 6.5.4 Selection of Rock Shear Strength for Design .227 CHAPTER 7 . 229 7.1 INTRODUCTION. 229 7.2 LOESS. 230 7.2.1 Identification of Loess .230 7.2.2 Issues Related to Subsurface Exploration in Loess .231 7.2.3 Laboratory Strength Testing of Loess.232 7.2.4 Evaluation of Collapse Potential.232 7.3 EXPANSIVE SOILS. 233 7.3.1 Identification of Expansive Soils.233 7.3.2 Evaluation of Expansion (Swell) Potential .235 7.3.3 Shear Strength Evaluation of Expansive Soils.236 7.4 ORGANIC SOILS AND PEAT . 236 7.4.1 Introduction.236 7.4.2 Identification of Organic Soils and Peat .237 7.4.3 Issues Related to Subsurface Exploration and Sampling of Organic Soils and Peat.238 7.4.4 Shear Strength of Organic Soils and Peats .238 7.4.5 Compressibility of Organic Soils and Peats.239 7.5 COLLUVIUM AND TALUS . 240 7.5.1 Identification of Colluvium and Talus.240 7.5.2 Issues Related to Subsurface Exploration and Testing in Colluvium.241 7.5.3 Issues Related to Subsurface Exploration and Testing in Talus.241 7.5.4 Compressibility of Colluvium and Talus.242