介电常数和磁导率示意图超构表面:0E<0,H>0>0,H>0绿色和蓝色区域的材料但有微小、超薄的平面周期NO性或准周期结构er06<0,H<0E>0,u<0零折射率材料:黄粉色区域图取自“罗杰,赖耘,零折射率材料的物理与应用,物理,48卷7期,426(2019)”1
1 介电常数和磁导率示意图 超构表面: 绿色和蓝色区域的材料 但有微小、超薄的平面周期 性或准周期结构 零折射率材料:黄粉色区域 图取自“罗杰,赖耘,零折射率材料的物理与应用,物理, 48卷7 期,426 (2019)
第四章超构表面及零折射率材料4.1零折射率材料及其应用4.2超构表面及其应用4.2.1超材料概况4.2.2基于广义snell定律的相位调控4.2.3偏振调控4.2.4介质超构表面4.2.5基于超构表面的光学非线性古英ygu@pku.edu.cn2
2 第四章 超构表面及零折射率材料 4.1 零折射率材料及其应用 4.2 超构表面及其应用 4.2.1 超材料概况 4.2.2 基于广义snell定律的相位调控 4.2.3 偏振调控 4.2.4 介质超构表面 4.2.5 基于超构表面的光学非线性 古英 ygu@pku.edu.cn
natureREVIEW ARTICLEphotonicsHEDONLINE:17JUEY20NIDOE10.103R/N2011年之前:Pastachievementsandfuturechallengesin3D超构材料thedevelopmentofthree-dimensionalphotonicmetamaterials集中于负折射Costas M. Soukoulis2* and Martin Wegener?"Photonic metamaterials are man-made structures composed of tailoredmicro-ornanostructuredmetallodielectric subwavelengthbuildingblocksbGoldDielectricSilverFigure2|3D photonic-metamaterial structures.a, Double-fishnet negative-index metamaterial with several layers'3s,9.2.zx7,b,"Stereoorchiralmetamaterial(seealsoFig.3)fabricatedthroughstackedelectron-beamlithography24-26.2-33,c,Chiralmetamaterialmadeusingdirect-laserwritingandelectroplating38d,Hyperbolic(or'indefinite)metamaterial434madebyelectroplatinghexagonal-hole-arraytemplates49,e,Metal-dielectriclayeredmetamaterial composedofcoupledplasmonicwaveguides,enablingangle-independentnegativenforparticularfrequencies444s.f,SRRsorientedinallthreedimensions,fabricatedusingmembraneprojectionlithographyst.g,Wide-anglevisiblenegative-indexmetamaterialbasedonacoaxialdesignsph,Connectedcubic-symmetrynegative-indexmetamateriallstructureamenabletodirectlaserwritingo.i,Metalcluster-of-clustersvisible-frequencymagneticmetamaterialmadeusing large-area self-assembly?9.j,All-dielectricnegative-indexmetamaterial composedof two setsofhigh-refractive-index3dielectric spheres arranged on a simple-cubic lattice52-s
3 2011年之前: 3D超构材料 集中于负折射 “Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallodielectric subwavelength building blocks
NATUREREVIEWSIPHYSICSVOLUME1MARCH20191992019年综述3Dmetamaterials给出了超材料的要点MuamerKadic,2GraemeW.Miltons,MartinvanHecke45andMartinWeqenero?KeypointsMetamaterialsarerationallydesigned compositesmadeoftailored buildingblockswhicharecomposedofoneormoreconstituentbulkmaterials,leadingtoeffectivemediumpropertiesbeyondthoseoftheiringredients..Metamaterialstherebyfulfila long-standing dreamofcondensedmatterphysicstodesignmaterialsonthecomputertoavoidtedioustrial-and-errorproceduresandexcessiveexperimentationAlthoughmany1Dand2Dmodelarchitectureshavebeenconsideredbecauseoftheireaseoffabrication andreduced design complexity.thefull potentialofthemetamaterialconceptisopenedupfor3Dmicrostructuresandnanostructures.lnelectromagnetismandoptics,examplesareeffectivediamagnetismandParamagnetismuptoopticalfrequencies,impedancematchinganddualitynegativerefractiveindices,maximumelectromagneticchirality.perfectopticalabsorptionandnon-reciprocalpropagationofelectromagneticwaveswithoutstaticmagneticfields.Inacousticsandmechanicsparameters,chiralmechaniccompressibility.negativedybroadbandperfectsoundatandhighlynonlinear,multistconstituents.Intransport,examplesarehitheabsolutemobilityandthmaghetoresistances and theofmagnitude.Future3Dmaterialprinters!10μm2um1μmpropertiesfromonlyasmalltoday's2DgraphicalprinterFig.2|Gallery of designed3D opticalmetamaterial unit cells andcorresponding experimental realizations.cartridges.alAnarrangementofmetallicsplit-ringreslatorsleadingtoartificialmagnetismb|Afishnetarrangementforuniaxialnegativerefractiveindices.c|AnABAB...ABlaminate,whichisaunitcellusedinmanymetamaterials,including4hyperbolicmetamaterialsd|Helicesprovidingchiralbehaviour,e|Multipleintertwinedhelicesforrecoveringthree-foldrotationalsymmetry.PanelaisadaptedwithpermissionfromREF.Wiley-VCH.PanelbisadaptedfromREE,Springer
4 2019年综述 给出了超材料 的要点
natureFOCUSIREVIEW ARTICLEnanotechnologyPUBLISHEDONLINE:7JANUARY2016|DOI:10.1038/NNANO.2015.304All-dielectricmetamaterialsSaman Jahani andZubin Jacob1.2*超材料的研究集中在:负折射、手性、零折射率材料、双曲材料等方面,但是人们研究超材料是为了在亚波长尺度任意操控光(振幅、相位、偏振),光学超构表面的研究正是达到了此目的Even though metamaterials research started with the quest fornegative-index, zero-index,chiral73 and hyperbolic74media, thegoal of the field has grown into arbitrary control of the amplitude,phase andpolarization of light wavesatthe subwavelength(nano)scale2930.The most promising route to achieve this goal consists of5
5 超材料的研究集中在: 负折射、手性、零折射率材料、双曲材料等方面,但是人们研 究超材料是为了在亚波长尺度任意操控光(振幅、相位、偏 振),光学超构表面的研究正是达到了此目的