.16.顺序征模从根量税,甲用Y论其Y其济要文项研’英因公于性,甲其“A1,j=1,2,..,n1,:3:于性,甲其(2),入2j=1,2,...,n2节等,体入=1,入2=0.把量多模里入1入2其任归快关增人质究就收文第司愈因去慢乐贺职分寻多精浴量模从只u程关您或英含同形两文、“现文增段应英、寻愈安等Fisher收都可以英用
· 16 · ✭✯✮✯✰ ❾ ❿✲✱✲✳ ✽☞✾❥✯á✯❸ Y ✿✯s✯Ô✯á✯❸✯①✡❀✯ç Y ✇✯➹✯❽✯s y (i) j = ( λ1, ✵❻❽✘➍ á✯❸✯s x (1) j , j = 1, 2, · · · , n1, λ2, ✵❻❽✘➍ á✯❸✯s x (2) j , j = 1, 2, · · · , n2, ↕✝❁ λ1, λ2 s✝✮✝❂qèqéqÞ✝❃q✇q♦q➜q①✡❄q❾q➉q➹ λ1 = 1, λ2 = 0. ↔✝❅q↕qéqÙ❡ ✢q➟q➠q➡❇❆❈✷◆❾ ❿✯✇✯➢✯➤ . (⑨✯t✯①✡✤îí☞✥qÙ❡ ➉q➊✝❉q➠q➡◆❾◆❿❇❆❈✷qÙ❡✝❊✝❋✝●➣■➉q➊✝❍✝■q①③↕q➔✝✰✝✱q✇✝✤î ✲➜☞❏☞❑☞▲✯✇ Fisher ✤ î❃☞▼✯➣ )
态估小二佳线性无偏回归向将系二值将系在不致以若推进这式台为代和与进误子进以为为代茵桌可书聘飞将蔡寿奔况型下本问算升混滑然进布讨可法台布进代阵情面推出讨2分了述,情能立误阵立讨推去由种除可分著二黑体这式一用机”阵可mA.B.:n表讨阵A效法m×n阵A,.用身高外YAA诗阵可1二阵效法表例引进1×n记法Amxn里A.阵效其重黑体身高法,例引可以”芝两讨就标阶进生算甲一余机a.b....表例引进a',b”.雨康高为婴求文.向奋,例引可阵A讨记法rk(A).效阵Anxn讨E法存英如母L解效解,效A讨美进记法tr(A).字A法阵进表记法A>0.字A法存A-B>h阵进表记法A≥0.记归A≥BA-B≥0. 系A>B,时把A財高身高阵可改写形进述度能立讨一阵给法某述,讨致恰面*的讨:82.1重为代比单讨一阵进道广为代比单讨推公司商甫身离保只分阵:去代品奇$2.2~2.3能立一阵诗销售告广时都讨步阵$2.4中费第哈和线代品:推志下布讨,与可论算,?进能立阵讨例引阵讨Kronecker中根第大个性回归系性区年很$2.1段录诉位量细口只况元归系快关收含同历史值且达并并客真正历点五且值主一并客真正快槿得缇行已含同nx1知,复存恩“任“何但体”向历并客真复力模,上来粮实无时要正且》严过”历散侠小较同真正历无时方相性花赖说连2并客真正S续严则寻历研究就月著名无时指间化无时阶相“实T“客且S”某研S”且S”某某”知历寻也S"且满意非研无时便无时逼柔原具实粮统添况因就律则夜换律且寻因就律则分配律等存“客质全体具上阶相粮万向历究就收Rn,n知I研并客真正考Rna1,a2,....ak无时要无时要行1切可能历并客历就构向历究就要kTSo=T=1,.,Q均收知aiai,i=1根容易验证且So也严并客真正且称收Rn历子真正若将a1,a2,ak排向n×k系A=(a统a),则S可点收So=(=At得R),严A行归系时张向历子真正且收,So=M(A).容易证明且R历某子真正都严某房粮行列张向历子真正“设a1,a2,,ak收Rm”历且若存,不全收零历知无时要无时K
◆P❖P◗ ❘P❙P❚P❯P❱P❲P❳❩❨ ➈ ➴❢ ★q ⑨✡⑩✙➟➪❲✞❳✡❜✡❝✡➇ û❲✞❳✡❜✡❝✡❞➹❭❬✐ q☞❪✡➚á❭❫❭❴❭❵q ➈❲ ❳✤❜✤❝✤❞❜❛✉❜❝❜❞❧ q ✜✈❜❡❸❢✡➋❭❢✤➂❭❣✤Û✡❞❜❤✞❙✤➇ ❥ ➪✚ ❛✡➊❜✐★❭❥❞❭❦✤Ûq ❘ ★❡Ö✡×✞✩✞✵✞✜✈×✡❞✡❢✞❊➡ò✡s❭❧➇ ⑨✡⑩➶❭♠✣❭♥❭♦ A, B, · · · , ➹✡➘✜✈ ➇ m ➠ n ♣ ❞✞✜✈ A ⑤ ❥ m × n ✜✈ A, ✂✤❥ Am×n ❁ A. ➶ A0 ➹✤➘ A ❞❜q❜r✁✜✈ ➇ m×1 ✜✈✤⑤❥ ♣ß♦ï♣✤q 1×n ✜✈✤⑤ ❥➠♦ï♣➇ ➈✤á❭s❫❜t✤❞é✤ê✡ëq ✠✤➊✞➶❜✉✣❜♥❭♦ a, b, · · · ➹✤➘♣ß♦ï♣✤q a 0 , b 0 , · · · Õ ❸ ➠ ♦☞♣➇❐✜✈ A ❞❭✈✞✂✡❥ rk(A). ⑤ ➀ ✈ An×n ❞➑❭✇❲✞✪✞✫❭①✡↕ Pn i=1 aii ❥ A ❞❭②q ✂✡❥ tr(A). ③ A ❥❭④✡⑧➑✡⑤➀ ✈✡q✑➷✂✡❥ A > 0. ③ A ❥❭⑤❭④✡⑧➑✡⑤➀ ✈✡q✑➷✂✡❥ A ≥ 0. ✂✞✢ A ≥ B, ➹✡➘ A − B ≥ 0. ➐ A > B, ➹✡➘ A − B > 0. ⑥ Ò ⑦❭⑧⑩⑨q ❘❭❶✡ù✡Ö✡×✡❞✞✜✈⑩❷❥❭❸✞✜✈ ➇ ❘ ★ ❞❭❹❭❺❸➮✒✡❞ : §2.1 ➶❲✞❳❭❻✡➼✡❞✞✜✈➹✡➘q✁❼❭❽❭❾❭❿❭✞❲✞❳❭❻✡➼✡❞✡❢ ❊✞❳❭➀✡➇ §2.2 ∼ §2.3 Ö✡×✞✜✈ ❞❭➁❭➂❭➃❨➅➄✞❄✡✈↕❭➆➈➇✈ . §2.4 ➉❭✡Ò✞❏❭➊✡❞❭➋ ➌❳❭➀✡↕✡❢✞❊❭❣✡Û✡❞á❄ ✐✡➇ ❡✡➊➔❥q Ö✡×✞✜✈ ❞ Kronecker ✤✞✥✞❨ ✜✈ ❞ ♦☞♣ ➯✞P❭➍✞✠❭➎❭➏❭➐❭➑❭➒❭➓ §2.1 ➔➣→↕↔➛➙ ➜➈➝➈➞➈➟➈➠➈➡➈➢➈➤➈➥➈➦➈➧➈➨➅➩➈➫➈➭➈➯➈➲➈➳➈➵➈➥➏➈➐➈➸➻➺➨➅➼➻➧➈➽➈➾➻➯➈➲➈➳➻➵ ➥❭➚❭➪❭➶❭➩❭➹❭➘❭➨✝➴❭➷❭➬❭➚❭➪❭➮❭➱➓✝✃❭❐❭❒❭❮❭❰➢❭➤ n × 1 Ï❭Ð⑩ÑÓÒ❭Ô❭Õ➥❭➯❭➲❭➳ ➵❭➨➅Ö❭×❭Ø❭Ù❭➥❭Ú❭Û➅Ü❭Ý ÑÓÒ➳❭➵❭➥ßÞáà❭â❭ã➓ ä❭å➯❭➲❭➳❭➵ S æ× ÑÓÒ➥❭➚❭ç❭è❭é❭➨➅Ö❭ê ÑÓÒ❭ë❭ì➈í❭Ð➈î❭ï➈ð❭ñ➍➈ò❭ó➈ô õ➲❭➨✎ö S ÷Óø❭ù❭ïç ÑÓÒ❭ú❭í⑩ûÓü❭ý S ÷ ➨ S ÷Óø➚ ÑÓÒ❭þ❭ø➚ Ï❭Ð➥î❭ÿ✁ ü❜ý S ÷ ➨✄✂✆☎✆✝ë❜ì➹❜é✆✞í✆✟✁✠✞❜➨ Ð❜î➹❜é✁✞í✁✡✁☛✞✁☞❜➶❭➩❜➲✁✌➓ ➮✆✍✁✎ n×1 Ï Ñ✗Ò❜Ô❜Õ➥❜è❜é❜➜ Rn, Ö❜×❜➚❜ç❜➯❜➲❜➳❜➵➓✑✏✆✒ Rn ÷❜Ñ✗Ò❜Ô a1, a2, · · · , ak ➥❭➚✁✓✁✔✁✕❭➥❭➯❭➲Ô é✁✖Õ ➥❭è❭é S0 = n x = X k i=1 αiai , α1, · · · , αk✗➜Ï❭Ðo , ✘✚✙✚✛✚✜➨ S0 ×➈➯➈➲➈➳➈➵➈➨✣✢➈➜ Rn ➥✚✤➈➳➈➵➓✣✥✚✦ a1, a2, · · · , ak ✧Õ n × k ➏➈➐ A = (a1, a2, · · · , ak), ★ S0 ✔➸➜ S0 = {x = At, t ∈ Rk}, Ö➈× A ➥✚✩ ÑÒ ✪ Õ ➥✚✤➈➳➈➵➈➨➅➮➈➜ S0 = M(A). ✘✚✙✚✜✬✫➨ Rn ➥ø➚✚✤➈➳➈➵✚✭➈×✚✮➈➚➏➈➐➥ ✩ ÑÓÒ✪ Õ ➥✁✤❭➳❭➵➓✰✯ a1, a2, · · · , ak ➜ Rn ÷➥❭➚Ô⑩ÑÓÒ➨ ✥✁✱ý✁✲✍❭➜✁✳❭➥Ï
.18.道章多物模掌握真数a12理意++ak=0,分归向量组q1,a2,ak是线性质均的巢是归它行是缓程急药的、测束严空高,分一组线性实均的问基4,线性,的分关归 a1,a2,ax为 So 的一组基,为 So 的维数,记读=dim(So).要成,分对 Rn领,向量组e=0,,0,1,0,,0),i=1,2,….,n为一组基,别取,在术e中于可个都以以,所用,R的维数为n.记I.=(e1""氧尚盐称适近都都 阵),)分(1) dimM(A) = rk(A) :疾(2) M(A) CM(A: B) 指bj,j=1,2,.·,l称表为a1,a2,..,ak的线性组描述合,分M(A)=M(A:B);对Rn中的任意两个向量a=(a1,a2,….,an),b"=(b1,b2,..,bn),因它们此疾成线’记为α考,猴的积为(a,b)=ab=abi.(a,b)=0, 归a与b美分第于记为兰棵ca/a与空间S中的为一个向量归a成线:(2,4)2为间量α的代,成高容感势二严空间TS=(S)然是线性空间,归为.S的,空间.合A为n×k矩阵,记AI为满足之成线最身=0且具有有种问的阵,分M(A+) = M(A).(2.1.1)将对于一个线性空间S,测果应在个产空间Si,,Ski项地对任意aES称系为函aieSi,i=-l,2,...,k,a=al+...+ak疾归S为S1,·…,Sk的直和,记为S=Si…·Sk进一讨论合,对任意的分eSiajeSj,i有aiaj分归S签Si,,S的成线直和,记为=糖s+,对,的在一产间s容机记为为,推M(A)nM()=(0),i分M(A) = M(A1)④...④M(A) .疾进一讨论合AA,=0,i分M(A)=M(A1)+...+M(A)过误实例元三标别些元实的与法然引进元计“实,在后面的讨论中,种,用面便阵对 2.1.1对任意所阵A谓有M(A)=M(AA")
· 18 · ✴✰✵✰✶✸✷✰✹✰✺✰✻✰✼✰✽✰✾✰✿ Ð α1, α2, · · · , αk, ❀✁❁ α1a1 + · · · + αkak = 0, ★✢ ÑÓÒ❭Ô a1, a2, · · · , ak ×❭➯❭➲✁❂✁❃ ➥✆❄❆❅★✢❜Ö❐×❜➯❜➲✆❇✆❃❜➥➓❆❈➘✆✤❜➳❜➵ S0 ❉ ➚ Ô ➯❜➲✆❇✆❃❜➥ Ñ✗Ò a1, a2, · · · , ak ✪ Õ ➨ ★✢ a1, a2, · · · , ak ➜ S0 ➥❭➚Ô ➶❭➨ k ✢❭➜ S0 ➥❭ÝÐ ➨➅➮✁❊ k = dim(S0). ê Rn ❋✚●➨ ÑÒ➈Ô e 0 i = (0, · · · , 0, 1, 0, · · · , 0), i = 1, 2, · · · , n ➜➈➚Ô ➶➈➨✣❍✚■➈➨ ý ei ÷ ➨ 1 ❏ ❰✁❑ i ç ❏✁▲➓➅ä✁▼ , Rn ➥❭ÝÐ ➜ n . ➮ In = (e1, · · · , en) ➜ n ◆✁❖✁❏ ➐➨ ★ Rn = M(In). ✯ A = (a1, a2, · · · , ak), B = (b1, b2, · · · , bl), ★✘✁✙✁✜P✫ (1) dimM(A) = rk(A) ; (2) M(A) ⊂ M(A . . . B), ◗✁❘✥ bj , j = 1, 2, · · · , l ✔➸➜ a1, a2, · · · , ak ➥❭➯❭➲Ô é❭➨ ★ M(A) = M(A . . . B) . ê Rn ÷➥ø➈ù➈ïç ÑÒ a 0 = (a1, a2, · · · , an), b 0 = (b1, b2, · · · , bn), ❙✚❚Ö❐ ➥P❯ÿ ➜ (a, b) = a 0 b = Pn i= aibi . ✥ (a, b) = 0, ★✢ a þ b ❱✁✟➨➅➮❭➜ a ⊥ b . ✥ a þ✤➈➳➈➵ S ÷➥✚❲➈➚➈ç ÑÒ✚❱✚✟➨ ★✢ a ❱✚✟❰ S, ➮➈➜ a ⊥ S. ✢ (a 0a) 1/2 = ( Pn i=1 a 2 i ) 1/2 ➜ ÑÓÒ a ➥✁❳✁❨❭➨➅➮❭➜ kak. ✯ S ➜❭➚✁✤❭➳❭➵❭➨ ✘✁✙✁✜P✫ S ⊥ = {x❩ x ⊥ S} ×➈➯➈➲➈➳➈➵➈➨✣✢➈➜ S ➥❱✚✟❭❬➳➈➵➓✣✯ A ➜ n × k ➏➈➐➨➅➮ A⊥ ➜✚☎✚✝✚❪✚❫ A0A⊥ = 0 ✂ò❭ó✁❴✁❵✁❛➥➏❭➐➨ ★ M(A ⊥) = M(A) ⊥ . (2.1.1) ê❰➚❭ç❭➯❭➲❭➳❭➵ S, ❈➘✱ ý k ç✁✤❭➳❭➵ S1, · · · , Sk, ❀✁❁ê ø❭ù a ∈ S, ✔✁❜❭➚ ✡✁❝➜ a = a1 + · · · + ak, ai ∈ Si , i = 1, 2, · · · , k, ★✢ S ➜ S1, · · · , Sk ➥➈Øí ➨➅➮➈➜ S = S1 ⊕ · · · ⊕ Sk. ✥➬➈➚✚❞✚❡✯➨➅êø➈ù➥ ai ∈ Si , aj ∈ Sj , i 6= j ó ai ⊥ aj , ★✢ S ➜ S1, · · · , Sk ➥❱✚✟Ø í ➨➅➮➈➜ S = S1+˙ · · · +˙ Sk, ◗✆❘ Rn = S+˙ S ⊥ , ê Rn ➥ø➚✆✤❜➳❜➵ S Õ✆❢➓❣✯ A = (A1 . . . · · · . . . Ak), M(Ai) ∩ M(Aj ) = {0}, i 6= j, ★ M(A) = M(A1) ⊕ · · · ⊕ M(Ak) . ✥➬❭➚✁❞✁❡✯ A 0 iAj = 0, i 6= j, ★ M(A) = M(A1) . + · · · . + M(Ak) . ❍❭➪✁❤Ï ➥✜P✫✁✐❦❥✁❧✁♠❊✁♥✁♦ ➓ ♣➡✁q❭ç✁❤Ï ➨ ý ➠❭➡❭➥❭➢❭➤÷❦r✁s✁t➭✁✉➓ ✈✁✇ 2.1.1 ê ø❭ù✁①➐ A, ② ó M(A) = M(AA0 )
52.1际性有世.19-相L写这式较M(AA)CMA)于史M(A)C M(AA). 基知某法面M(AA),多=0.右寻,AA=A2=0,手A面0.严三根IM(A).求欲者对2.1.2设Anm,Hkxm,分(1)S=(Ar:Hr=0)严M(A)历、真正且A(2) dim(S) = rkrk(H),H行细我三求严(2).或差设rk(H)=k,应写这可“因同历一这历且mxmS分里HQ=(I:0).已严称逆Q:项Adim(S)Qr:HQr=dimr:HrHHUiU2=dimr: (k: 0)= (=dim[U2(2):(2)某)0IkUiU2A-rk(I) = rkrk(H),=rk(U2) = rkIk0H从(1)且(2) 收 (m=k)×1(U1: U2) = AQ,(1)收×1无时无(2)根三模根因析时型论2.1.1M(AB-) =M(A),设M(A)nM(B)=[0),分用收写这M(A'B)=(A'r,=B+t,t某_}=[A'r,B'r=0],T数然因析2.1.2据论设之且名A'dimM(A'B-)= rk-rk(B') = rk(A: B) - rk(B) =rk(A) = dim(M(A)),B'可M(A'B-)CM(A')已严M(AB-)=M(A)
§2.1 ③⑤④⑤⑥⑤⑦ · 19 · ⑧✁⑨ ⑩à M(AA0 ) ⊂ M(A), ❶✁❷➦✜ M(A) ⊂ M(AA0 ). ❤ Ï✁❸➨➅êø❥ x ⊥ M(AA0 ), ó x 0AA0 = 0. ❹➈î x, ❁ x 0AA0x = kA0xk 2 = 0, ❶ A0x = 0. ❰× x ⊥ M(A). ✫ä✁❺✜➓ ✈✁✇ 2.1.2 ✯ An×m, Hk×m, ★ (1) S = {Ax : Hx = 0} × M(A) ➥✁✤❭➳❭➵❭➨ (2) dim(S) = rk A H − rk(H). ⑧✁⑨ ❑➚❭➹❭➤❭➥✜P✫×❭➼❖ ➥❭➨❼❻✜ (2). ✲✁❽✯ rk(H) = k, ★✱ ý m × m ✔✁❾➐ Q, ❀✁❁ HQ = (Ik . . . 0). ❰× dim(S) = dim A H x❩ Hx = 0 = dim A H Qx❩ HQx = 0 = dim U1 U2 Ik 0 x❩ (Ik . . . 0)x = 0 = dim{U2x(2) ❩ x(2)ø❭ù} = rk(U2) = rk U1 U2 Ik 0 − rk(Ik) = rk A H − rk(H), ❿ ÷ (U1 . . . U2) = AQ, x = x(1) x(2) , x(1) ➜ k × 1 ÑÓÒ➨ x(2) ➜ (m − k) × 1 Ñ Ò ➓ ❙✁➀✜✁➁➓ ➂✁➃ 2.1.1 ✯ M(A) ∩ M(B) = {0}, ★ M(A 0B⊥) = M(A 0 ). ⑧✁⑨ ➄➜ M(A 0B ⊥) = {A 0x, x = B ⊥t,tø❭ù} = {A 0x, B 0x = 0}, ➅ ❙✁➀ 2.1.2 ➆ ❡✯❪✁❫❭➨ ó dimM(A 0B ⊥) = rk A0 B0 − rk(B 0 ) = rk(A . . . B) − rk(B) = rk(A) = dim(M(A 0 )). ➇ M(A 0B ⊥) ⊂ M(A 0 ), ❰× M(A 0B ⊥) = M(A 0 )
.20.量:张成空间,交投影变有佳销表品82.2持线性愈步缺余缺采退系缺归系且维子家[83],标国线司区年段录同1935根Moore文系边表家误在A,Moore不测平诉文AXA=A,XAX = X,(AX)'- AX,(XA)-XA如缺退保缺退表口只缺机示值立但关个收名20根佳线A线司X.线司量换误崔缺退上增(87)余起子重有第如金义快关令表刻1055根但贸说甲观线司著名只退归系家误窕只机家况定义.关但线司甲观诉含同无变1值费值伯历史表重待退退重最量余如退变Moore-Penrose令线司线司很客真线司表Penrose缺达并并常缺将立正表倾混究皆边重标待客真倾很广Ar = b,(2.2.1)系引说详细机均但商A立mxn但五rk(A)<min(m,n)=m=7r77文起字且点行细系.行然积复混T=A-1b.A向向立客小主但主但客真倾(2.2.1)名司表示说统缺对称6或性单估(2.2.1)混立任何偶。:2.1) 名反存快混但测因不香黎亲说福缺退是受留摄沿但表Penrose[87]1混主但值不(2.2.1)线司给定值梵维上缺差孕家误在待机退余将表已关值20知60根关时也时但50根线司换如致缺采简方重无缺日系格统若宽缇很线司混客真债(2.2.1)分时他换乘警严机缺退缺重记散但同过道司线司密商,很混量说表系缺模橡缺除中节采KP同映不表要[16].客真倾。线司同待小文金品的A-2.2.1较白系子阵定义标Amxn,客真倾2.2.1较文AXA-A(2.2.2)某系缺退缺系最变司但变A-XA线#文文表由缺如的重分缺根重混A-佳同过表品上立
· 20 · ✴✰✵✰✶✸✷✰✹✰✺✰✻✰✼✰✽✰✾✰✿ ❙✁➀✜✁➁➓ §2.2 ➈➊➉➊➋➊➌➎➍ ã❚ ❾ ①➐➥✁➏✁➐✚✔▼✚➑✁➒✉ 1935 ➓ ➥ Moore ➥✁➔✁→❭➤✁➣ [83] . ê ø❭ù➚❭ç ①➐ A, Moore ➭❈✁♣✁↔ç✁❪✁❫❩ AXA = A, XAX = X, (AX) 0 = AX, (XA) 0 = XA, ❙✁❚➝ A ➥❭ã❚ ❾ X. ➇×❭➨ ý✁↕➠❭➥ 20 ➓⑩÷➨➙❍ð ã❚ ❾✁q✁➛✁➜ó➷✁➝✁➞❐➥ ➟✁➠✁➡ù ➓ Ø✁✉ 1955 ➓ ➨ Penrose[87] ✜P✫➝✁☎✁✝❸➾✁❪✁❫❭➥❭ã❚ ❾ò❭ó❜❭➚❭➲ú ➠❭➨áã❚ ❾❭➥✁➏✁➐✁➢✁➤❱ ➜✁➞❐❭ä✁➥✁➦❭➓ ➶❰❍❭ç✁➧➄➨➨➞❐✁➩☎✆✝❸➾↔ç✁❪✁❫ ➥❜ã❚ ❾✆✢❜➜ Moore-Penrose ã❚ ❾➓ Penrose ➫✆➭✆➯➡ ù ✉❜➝❜ã❚ ❾ í➯❜➲✁➲✁➳ Ô ➥❝❭ú➵❭➥✁❃✁➵➓ ê❰❂✘➯❭➲✁➲✁➳Ô Ax = b, (2.2.1) ❍✚■ A × m × n ①➐➨ ❿❛ rk(A) = r ≤ min(m, n). ➸ä✚➺✚➻➨✣➼ r = m = n ➽➨➾➲✁➳Ô (2.2.1) ó❜❭➚❝ x = A−1 b. à ❋ ➨➾➼ A ✲✔✁❾✁➚✁➪❭➩✲×✁➲➐➽➨ ✥ (2.2.1) ó❇✁➶➟❝ ➨ ❈✁➹➭ A í b ➘✁➴➼❖ ➥✁➷✁➬➸✁➮ (2.2.1) ➥✁✍✁✎❝ ×✁➱✁✃✁❐ ➥➓ Penrose[87] ❒✁❮ ➨ ý➏✁➐ (2.2.1) ➥❝➽➨ ä➧❭➭❭➥❭ã❚ ❾ ❷➦❭➧✁☎✁✝❸➡❭➥ ❑➚❭ç✁❪✁❫➓❦❰❍▼ ➠❭➨ 20 Ï✁Ð 50 ➓✁Ñ➠✁Ò✁✉ 60 ➓✁Ñ✁ÓÒ❭➨❦❃❰❍ ð ã❚ ❾❭➥ ➏✁➐❮ ❻❭➝❵ Ò ➥✁➣✁Ô❭➨➅➴✁✂❭➭✁❍ð ã❚ ❾✁Õ✁Ö❝✚×➝✁❂✘➯❭➲✁➲✚➳Ô (2.2.1) ➥ ❝ ➥➸✁➮✁Ø✁Ù❭➓➅✃❭❐✁➩❍ ð ã❚ ❾❭➮✁❊ A−. ➩✁Ú❭➢❭➤✁❍ð ã❚ ❾❭➥❭➲✁✌➆ ❿ ý ➯ ➲✁➲✁➳Ô✁➀➤ ÷➥❭➟❭➭➓ ❃❰ã❚ ❾ ①➐➥✁Û✁Ü❭➢❭➤❧✁♠✔✁Ý✁Þ✁➣✁Ô [16]. 2.2.1 ß✁à✁á A- ✈à 2.2.1 ê ①➐ Am×n, ➚✁✓✁☎✁✝✁➲✁➳Ô AXA = A (2.2.2) ➥①➐ X, ✢❭➜①➐ A ➥❭ã❚ ❾❭➨➅➮❭➜ A−. ♣➡❭➥❙✁➀✁❝✁×➝ A− ➥✱ ý➲ í✖✁â❭➲Ø✁Ù❭➓