k元例46y(k)- 5y(k -1) + y(k - 2) = 10cos2y()=0 y(l)=l 求 y(k) k≥0解:622—52+1=0yh(k) =C()+C
4 6 ( ) 5 ( 1) ( 2) 10cos 2 (0) 0 (1) 1 ( ) 0 k y k y k y k y y y k k − − + − = = = 例 求 2 解: - += 6 5 1 0 1 2 1 1 2 3 = , =1 2 1 1 ( ) ( ) ( ) 2 3 k k h y k C C = +
k元例46y(k)- 5y(k -1)+ y(k -2) = 10cos2y(O)=0 y(1)=l 求 y(k) k≥0k元k元特解: y,(k)= Pcos()sin()12k-1元yp(k-1)= Pcos[sink元= Psin(QcosO(k-k-2)元2元y,(k -2)= Pcos[2k元k元=-Pcos(sin2k元k元k元= 10cos((6P +5Q- P)cos(()+(6Q-5P-Q)sin()22中
( 2) ( 2) ( 2) cos[ ] sin[ ] 2 2 p k k y k P Q − − − = + cos( ) sin( ) 2 2 k k P Q = − − ( ) cos( ) sin( ) 2 2 p k k y k P Q 特解: = + sin( ) cos( ) 2 2 k k P Q = − ( 1) ( 1) ( 1) cos[ ] sin[ ] 2 2 p k k y k P Q − − − = + 4 6 ( ) 5 ( 1) ( 2) 10cos 2 (0) 0 (1) 1 ( ) 0 k y k y k y k y y y k k − − + − = = = 例 求 (6 5 )cos( ) (6 5 )sin( ) 10cos( ) 2 2 2 k k k P Q P Q P Q + − + − − =
k元k元k元=10cos((6P+ 5Q-P)cos(()+(6Q-5P-Q)sin(P=16P+5Q-p=100=16Q-5P-Q=0k元k元k元2()= V2cos(.:. y,(k) = cos(+ sin(Fk元+c()* + V2 cos(,k≥0: y (k)= yh(k)+ y,(k)=c(y(0)= ci +C2 +1= 0Ci = 2三C2 =-3VL元)* - 3(=)* + V2 cos(,k≥0:.y(k)=
(6 5 )cos( ) (6 5 )sin( ) 10cos( ) 2 2 2 k k k P Q P Q P Q + − + − − = 6 5 10 6 5 0 P Q p Q P Q + − = − − = 1 1 P Q = = ( ) cos( ) sin( ) 2 cos( ) 2 2 2 4 p k k k y k = + = − 1 2 1 1 ( ) ( ) ( ) ( ) ( ) 2 cos( ), 0 2 3 2 4 k k h p k y k y k y k c c k = + = + + − 1 2 1 2 (0) 1 0 1 1 (1) 1 1 2 3 y c c y c c = + + = = + + = 1 2 2 3 c c = = − 1 1 ( ) 2( ) 3( ) 2 cos( ), 0 2 3 2 4 k k k y k k = − + −
k元2() -3()* + V2cos(45°k≥0y(k) =强迫响应自由响应暂态响应稳态响应1 21,2<1 :: 当k>00时 yh(k) →0, y(k)= yp(k)
自由响应 强迫响应 暂态响应 稳态响应 | 1,2|<1 当k→时 yh (k) →0, y(k)= yp (k) 1 1 ( ) 2( ) 3( ) 2cos( 45 ) 0 2 3 2 k k k y k k = − + − o
5.2零输入响应和零状态响应1=0=0Zp"-16(-1)-(-)=?>()=()+()完全解()="(≤)+()湾():在激励为零时,仅由初始状态引起的响应"(在系统的初始状态为零时,仅由激励引起的响应
5.2 零输入响应和零状态响应 0 0 ( ) ( ) n m n i m j i j a y k i b e k j − − = = − = − ( ) ( ) ( ) y k y k y k = + h p 完全解 ( ) ( ) ( ) y k y k y k = + zi zs ( ) 零输入响应y k zi : 在激励为零时,仅由初始状态引起的响应 s ( ) 零 响应 状态 : y k z 在系统的初始状态为零时,仅由激励引起的响应