旋转齐次变换矩阵007[1000c0-s0Rot(x,0):二00s0c0001][o0co0s00010Rot(y,0) =00c0-s000010c00-s000s0c0Rot(z,0) =0010000116
16 0 0 0 1 0 0 0 0 1 0 0 0 ( , ) s c c s Rot x 0 0 0 1 0 0 0 1 0 0 0 0 ( , ) s c c s Rot y 0 0 0 1 0 0 1 0 0 0 0 0 ( , ) s c c s Rot z 旋转齐次变换矩阵
例3.3已知点u=7计3j+2k,将u绕z轴旋转90°得到点v,再将点V绕y轴旋转90°得到点w,求点V、w的坐标Z解:70c90°S90°0337s90°00c90°V= Rot(z,90°)·u =000221 0000ux2′0c90°-3s90°0010077w= Rot(y,90°).V=302-s90°0c90°0001117
17 例3.3 已知点 u=7i+3j+2k,将u 绕 z 轴旋转90°得到点v, 再将点 v 绕 y 轴旋转90°得到点w,求点v、w的坐标。 c90 s90 0 0 7 3 s90 c90 0 0 3 7 ,90 0 0 1 0 2 2 0 0 0 1 1 1 v Rot z u 解: c90 0 s90 0 3 2 0 1 0 0 7 7 ,90 s90 0 c90 0 2 3 0 0 0 1 1 1 w Rot y v z y x o u v w
如果把上述两变换组合在一起之w = Rot (y,90) Rot(z,90°)u[2]70010273100032010010001111若改变旋转次序,首先使u绕y轴旋转90°,再绕z轴旋转90°,会使u变换至与w不同的位置w1。(b) Rot(z,90°) Rot(y,90°)(a) Rot(y,90°)Rot(z,90°)18图2.6旋转次序对变换结果的影响
18 如果把上述两变换组合在一起 ,90 ,90 0 0 1 0 7 2 1 0 0 0 3 7 0 1 0 0 2 3 0 0 0 1 1 1 w Rot y Rot z u 若改变旋转次序,首先使 u 绕 y 轴旋转90°,再绕 z 轴旋转 90°,会使 u 变换至与 w 不同的位置w1。 图2.6 旋转次序对变换结果的影响 (a) ,90 ,90 Rot y Rot z (b) ,90 ,90 Rot z Rot y
■例3.4已知点u=7i+3j+2k,将u绕z轴旋转90°得到点V,再将点v绕y轴旋转90°得到点w,最后进行平移变换4i-3j+7k,求最终的坐标。大解:把上述三变换组合在一起Trans(4, -3, 7) Rot (y,90°) Rot(z, 90°)0014100-317010000t = Trans(4, -3,7) Rot(y,90°) Rot(z,90°)·u图2.7平移变换和旋转变换的组合00164743100-3721001000019
19 例3.4 已知点 u=7i+3j+2k,将 u绕 z 轴旋转90°得到点 v,再 将点 v 绕 y轴旋转90°得到点w,最后进行平移变换4i-3j+7k, 求最终的坐标。 解: 把上述三变换组合在一起 4, 3,7 ,90 ,90 0 0 1 4 1 0 0 3 0 1 0 7 0 0 0 1 Trans Rot y Rot z 图2.7 平移变换和旋转变换的组合 4, 3,7 ,90 ,90 0 0 1 4 7 6 1 0 0 3 3 4 0 1 0 7 2 10 0 0 0 1 1 1 t Trans Rot y Rot z u
例3.5We are given a single frame (A) and a position vector Apdescribed in this frame. We then transform Ap by first rotating itabout Z, by an angle Φ , then rotating about Y by an angle .Determine the 3 X 3 rotation matrix operator, R(p,0), whichdescribesthis transformation.Solution: Suppose the first rotation converts AP ->Ap' , and thesecond rotation converts Ap'->A P" . Then we have:Ap'= R (d) 4p4p"= R,(0) 4pi= 4p"= R,(0)R.(d) ^p20
20 We are given a single frame {A} and a position vector AP described in this frame. We then transform AP by first rotating it about by an angle , then rotating about by an angle . Determine the 3 × 3 rotation matrix operator, , which describes this transformation. 例3.5 ˆ Z A ˆ YA R , Solution: Suppose the first rotation converts AP -> AP’, and the second rotation converts AP’-> A P”. Then we have: ' A A P R P z " ' A A P R P y " A A P R R P y z