第一章流体流动 §1流体流动现象 1-1由小区供水引出流体流动 某新建的居民小区,居民用水拟采用建水塔方案为居民楼供水,如图1-1所示。 qvI: qv2: qv3=? H= 水源 P=60000Pa 图1-1居民小区供水示意图 用泵将水送到高位水塔,水塔中的水源源不断的送到一、二、三楼的用户qn1、q2、q3 这里引出三个问题:第一个问题是,为了保证一、二、三楼有水,就要维持楼底水管中有 定的水压(60000Pa表压),为了维持这个表压,水塔应建多高?即图中的H=?当然 水塔高度的计算,有许多因素要考虑,水压仅是因素之一。第二个问题是,若水塔高度H确 定了,需要选用什么类型的泵?即图中泵的有效功率Pe=?第三个问题是,保持楼底水压 为60000Pa表压,那么一、二、三楼出水是均等的吗?即图中qn1:qn2:qn3=?当然, 图1-1的供水系统是实际供水系统简化又简化了的。学完流体流动这一章,就能系统解决 上述的三个问题了。 1-2几个物理名词 1.密度—单位体积流体所具有的质量,称为流体的密度。p="kgm-3 重度——工程单位制中,表示密度的单位,其数值与密度相同。kgfm-3 比重(相对密度)一物料密度与纯水(277K时)密度之比,其数值的一千倍
1 第一章 流体流动 §1 流体流动现象 1-1 由小区供水引出流体流动 某新建的居民小区,居民用水拟采用建水塔方案为居民楼供水,如图 1-1 所示。 图 1-1 居民小区供水示意图 用泵将水送到高位水塔,水塔中的水源源不断的送到一、二、三楼的用户 v1 v2 v3 q 、q 、q 。 这里引出三个问题:第一个问题是,为了保证一、二、三楼有水,就要维持楼底水管中有 一定的水压(60000 Pa 表压),为了维持这个表压,水塔应建多高?即图中的 H = ? 当然 水塔高度的计算,有许多因素要考虑,水压仅是因素之一。第二个问题是,若水塔高度 H 确 定了,需要选用什么类型的泵?即图中泵的有效功率 Pe = ?第三个问题是,保持楼底水压 为60000 Pa 表压,那么一、二、三楼出水是均等的吗?即图中 qv1 : qv 2 : qv 3 =?当然, 图 1-1 的供水系统是实际供水系统简化又简化了的。学完流体流动这一章,就能系统解决 上述的三个问题了。 1-2 几个物理名词 1. 密度——单位体积流体所具有的质量,称为流体的密度。 3 kg m - = × V m r 重度——工程单位制中,表示密度的单位,其数值与密度相同。 3 kgf m - × 比重(相对密度)——物料密度与纯水( 277 K 时)密度之比,其数值的一千倍
等于密度的数值。 比容密度的倒数,=1 2.压强—单位面积上所受流体垂直方向的作用力,称为流体的压强。P=-Pa 绝对压强—以绝对真空为基准的压强数值。 表压—某体系之绝对压强高出当地大气压之差值,称为该体系的表压 真空度—某体系之绝对压强低于当地大气压之差值,称为该体系的真空度。如 图1-2所示。 表压 食空度绝压 大气压 绝压 绝对零压 图1-2表压和真空度示意图 表压=绝压-当地大气压 真空度=当地大气压绝压 于是,真空度亦为负表压 3.流量—有体积流量与质量流量两种 体积流量(q)—单位时间流过导管任一截面的流体体积,m3s-; 质量流量(qn)—单位时间流过导管任一截面的流体质量,kgs-; 质量流量(qn)kgs=体积流量m3s-×流体密度=q,m3s- x p kg. m-3 流速(u)—流体质点于单位时间内在导管中流过的距离,ms 流邀()=体积流量() 导管截面积(A 需要记住以下常用数据: 1 atm]=101330Pa=1034米水柱=1.033工程大气压=760mmHg 空气p=1.293kgm-3,=00173cp=00173×103S单位 Cn=101kJkg-K-,管内流速取8~15 ms 水p=1000kg·m-3,=lcp=1×10-sI单位 Cn=4187kJ·kg-K-,管内流速取1~3ms-1
2 等于密度的数值。 比容——密度的倒数。 r 1 v = 2. 压强——单位面积上所受流体垂直方向的作用力,称为流体的压强。 Pa A F P = 绝对压强——以绝对真空为基准的压强数值。 表压——某体系之绝对压强高出当地大气压之差值,称为该体系的表压。 真空度——某体系之绝对压强低于当地大气压之差值,称为该体系的真空度。如 图 1-2 所示。 图 1-2 表压和真空度示意图 ∴表压=绝压-当地大气压 真空度=当地大气压-绝压 于是,真空度亦为负表压 3. 流量——有体积流量与质量流量两种 体积流量 ( ) v q ——单位时间流过导管任一截面的流体体积, 3 1 m s - × ; 质量流量 ( ) m q ——单位时间流过导管任一截面的流体质量, 1 kg s - × ; 质量流量( ) m q 1 kg s - × =体积流量 3 1 m s - × ´ 流体密度= 3 1 3 m s kg m - - × ´ r × v q 流速 (u) ——流体质点于单位时间内在导管中流过的距离, 1 m s - × 流速 ( ) ( ) ( ) A q u v 导管截面积 体积流量 = 需要记住以下常用数据: 1[atm] = 101330 Pa = 10.34 米水柱 = 1.033 工程大气压= 760 mmHg 空气 1.293 kg m 0.0173cp 3 = × = - r ,m 3 0.0173 10 - = ´ SI 单位, 1 1 1.01 kJ kg K - - = × × Cp ,管内流速取 1 8 ~ 15 m s - × 水 1000 kg m 1cp 3 = × = - r ,m 3 1 10- = ´ SI 单位, 1 1 4.187 kJ kg K - - = × × Cp , 管内流速取 1 1 ~ 3 m s - ×
1-3牛顿粘性定律 首先应指出,这是个实验性定律,是通过实验得出的 站在长江大桥上,人们可以看到,江中心水急浪大,江岸两边,水流速度小,证明流 速存在一个流动分布,如图1-3所示。横渡过长江的人,体会更深刻 江心 图1-3江面流速分布示意图 在圆管中流动的流体,我们可以想象它们是由无数的速度不等的流体圆筒所组成,如 图1-4所示。 流向 u 图1-4粘度定律推导示意图 我们选相邻两薄圆筒流体(1,2)进行分析。设两薄层之间垂直距离为dy,两薄层 速度差为du,即(l2-u1),两薄层之间接触的圆筒表面积为A,两薄层之间的内摩擦力 为F。实验证明,对于一定流体,内摩擦力F与接触面积A成正比,与速度差du成反比, 此即牛顿粘度定律 F=u dy (A) A 称为剪应力(单位面积上所受的内摩擦力),Nm-2; A du称为速度梯度(垂直于流体运动方向的速度变化率),s-
3 1-3 牛顿粘性定律 首先应指出,这是个实验性定律,是通过实验得出的。 站在长江大桥上,人们可以看到,江中心水急浪大,江岸两边,水流速度小,证明流 速存在一个流动分布,如图 1-3 所示。横渡过长江的人,体会更深刻。 图 1-3 江面流速分布示意图 在圆管中流动的流体,我们可以想象它们是由无数的速度不等的流体圆筒所组成,如 图 1-4 所示。 图 1-4 粘度定律推导示意图 我们选相邻两薄圆筒流体(1,2)进行分析。设两薄层之间垂直距离为dy ,两薄层 速度差为du ,即( 2 1 u - u ),两薄层之间接触的圆筒表面积为 A ,两薄层之间的内摩擦力 为 ' F 。实验证明,对于一定流体,内摩擦力 ' F 与接触面积 A 成正比,与速度差du 成反比, 此即牛顿粘度定律。 y u F A y u F A d d d ' d ' µ × Þ = m × × y u A F d d ' t = = m × ………………(A) ÷ ÷ ø ö ç ç è æ A F ' ——称为剪应力(单位面积上所受的内摩擦力), 2 N m - × ; ÷ ÷ ø ö ç ç è æ y u d d ——称为速度梯度(垂直于流体运动方向的速度变化率), 1 s - ;
—比例系数,称为粘度或动力粘度。 式(A)即为牛顿粘度定律。用一句话表述牛顿粘度定律,就是流体内部所受的剪应 力与速度梯度成正比。 ∴F=ml=m 业山如 改写式(A)得:r AAdr K. dE F d( 式中 为单位面积的动量变化率称为动量通量,所以牛顿粘度定律另一说法是 A·dt 动量通量与速度梯度成正比 顺便介绍一下,服从牛顿粘度定律的流体,我们称为牛顿型流体。不服从牛顿粘度定 律的流体,我们称为非牛顿型流体。 非牛顿型流体有三种,其剪应力与速度的关系如图15所示。 ①塑性流体 T=t+u ②假塑性流体 n<1) dy ③涨塑性流体 t=k du (n>1) 涨塑性流体 假塑性流体 图1-5粘性定律示意图 许多高分子溶液、涂料、泥浆等属于非牛顿型流体。 粘度(4) 牛顿粘度定律中的比例系数,其单位为: m.s. m 物化手册中常常提到以厘泊表示的粘度 1厘泊=001泊=0.01 达因·秒 1×10-3N 0.01 =1×10-3 1×10-m 3
4 m ——比例系数,称为粘度或动力粘度。 式( A )即为牛顿粘度定律。用一句话表述牛顿粘度定律,就是流体内部所受的剪应 力与速度梯度成正比。 Q ( ) t mu t u F ma m d d d d = = = 改写式(A)得: ( ) y u A t mu A F d d d d ' = × × t = = m ……………(B) 式中 ( ) A t mu d d × 为单位面积的动量变化率,称为动量通量,所以牛顿粘度定律另一说法是, 动量通量与速度梯度成正比。 顺便介绍一下,服从牛顿粘度定律的流体,我们称为牛顿型流体。不服从牛顿粘度定 律的流体,我们称为非牛顿型流体。 非牛顿型流体有三种,其剪应力与速度的关系如图 1-5 所示。 ①塑性流体 y u y d d t = t + m ②假塑性流体 ( ) 1 d d < ÷ ÷ ø ö ç ç è æ = n y u K n t ③涨塑性流体 ( ) 1 d d > ÷ ÷ ø ö ç ç è æ = n y u K n t 图 1-5 粘性定律示意图 许多高分子溶液、涂料、泥浆等属于非牛顿型流体。 粘度(m) 牛顿粘度定律中的比例系数,其单位为: 1 1 2 2 m s m d d kg m s m - - - - × × × × × = y u t m 1 1 kg m s - - Þ × × 物化手册中常常提到以厘泊表示的粘度。 1厘泊 = 0.01泊 2 cm 0.01达因×秒 = 4 2 5 1 10 m 1 10 N s 0.01 - - ´ ´ × = 2 3 m N s 1 10 × = ´ - 1 10 Pa s 3 = ´ × -
粘度∥的物理意义.由F=A业知,当取A=1m2,如=1s时,在单位接 触面积上M=F。所以粘度的物理意义为:在单位接触面积上,速度梯度为1时,由流体 的粘度引起的内摩擦力的大小。在相同的流体条件下,流体的粘度越大,所产生的粘性力 (或内摩擦力)也越大,即流体阻力越大。例如用手指头插入不同粘度的流体中,当流体H 大时,手指头感受阻力大,当小时,手指头感受阻力小。这就是人们对粘度的通俗感受。 1-4流体流动类型 当我们拧水龙头时,若水压大,水流是大而急的,激起盆底水花飞溅,若水压小,水 流是小而慢的,水呈细流状。有的自然风景区,水流有“飞流直下三千尺”的架势,有的 小溪则是涓滑细流。贵阳市的花溪公园是典型的涓涓细流,贵州安顺的黄果树瀑布则是典 型的“飞流直下”。这都说明,日常生活中,水的流动是有差别的 如何将这些定性的感性认识提高到定量的理论高度呢?流动类型与哪些物理量有关 呢?雷诺( Reynolds)从事了专门的研究。 1883年,雷诺通过大量实验观察到,流体流动分为层流(滞流)、过渡流、湍流,且 流动型态除了与流速(u)有关外,还与管径(d)、流体的粘度()、流体的密度(p)有关 雷诺将l、d、、p组合成一个复合数群 R 此数群,后人称之为雷诺准数Re,无数的观察与研究证明,Re值的大小,可以用来 判断流动类型。Re<2000,为层流。Re>4000,为湍流。Re在2000~4000之间为 过渡流 雷诺准数Re是个十分重要的数群。它不仅在流体流动过程中经常用到,而且在整个 传热、传质过程中也常用到。 层流特征:流体质点无返混,整个流动区都存在速度梯度,速度分布呈二次抛物线型 P1-P2 41l
5 粘度 m 的物理意义。由 y u F A d ' d = m × 知,当取 2 A = 1 m , 1 1 s d d - = y u 时,在单位接 触面积上 ' m = F 。所以粘度的物理意义为:在单位接触面积上,速度梯度为 1 时,由流体 的粘度引起的内摩擦力的大小。在相同的流体条件下,流体的粘度越大,所产生的粘性力 (或内摩擦力)也越大,即流体阻力越大。例如用手指头插入不同粘度的流体中,当流体m 大时,手指头感受阻力大,当m 小时,手指头感受阻力小。这就是人们对粘度的通俗感受。 1-4 流体流动类型 当我们拧水龙头时,若水压大,水流是大而急的,激起盆底水花飞溅,若水压小,水 流是小而慢的,水呈细流状。有的自然风景区,水流有“飞流直下三千尺”的架势,有的 小溪则是涓涓细流。贵阳市的花溪公园是典型的涓涓细流,贵州安顺的黄果树瀑布则是典 型的“飞流直下”。这都说明,日常生活中,水的流动是有差别的。 如何将这些定性的感性认识提高到定量的理论高度呢?流动类型与哪些物理量有关 呢?雷诺(Reynolds)从事了专门的研究。 1883 年,雷诺通过大量实验观察到,流体流动分为层流(滞流)、过渡流、湍流,且 流动型态除了与流速(u) 有关外,还与管径(d) 、流体的粘度(m) 、流体的密度(r) 有关。 雷诺将u、d、m、r 组合成一个复合数群。 m dur Re = 此数群,后人称之为雷诺准数Re ,无数的观察与研究证明,Re 值的大小,可以用来 判断流动类型。 Re < 2000 ,为层流。 Re > 4000 ,为湍流。 Re 在 2000 ~ 4000 之间为 过渡流。 雷诺准数 Re 是个十分重要的数群。它不仅在流体流动过程中经常用到,而且在整个 传热、传质过程中也常用到。 层流特征:流体质点无返混,整个流动区都存在速度梯度,速度分布呈二次抛物线型, ( ) 1 2 2 2 4 R r l p p ur - - = m