D0L:10.13374.issn1001-053x.2013.12.001 第35卷第12期 北京科技大学学报 Vol.35 No.12 2013年12月 Journal of University of Science and Technology Beijing Dec.2013 基于离子和分子共存理论的炉渣氧化能力表征 李鹏程1,2),李晋岩1,2),张盟),张建良),张鉴),杨学民2) 1)北京科技大学钢铁冶金新技术国家重点实验室,北京100083 2)中国科学院过程工程研究所多相复杂系统国家重点实验室,北京100190 3)北京中冶设备研究设计总院有限公司,北京100029 ☒通信作者,E-mail:yangxm71@home.ipe.ac.cn 摘要选用文献报道的14个渣系铁氧化物活度ae,0作为基础实验数据,验证了基于炉渣离子-分子共存理论 (IMCT)所定义的铁氧化物综合质量作用浓度NFe,0表征炉渣氧化性的可能性和精度.为了得到14个渣系的NF,O, 建立了CaO-SiO2-MgO-FeO-Fe2Og-MnO-Al2Og-P2O5渣系的IMCT-N:模型,其他13个渣系Nse,0可由该渣系的 IMCT-N,模型经简化得到.结果表明,铁氧化物综合质量作用浓度Nr:0不仅可像活度ae0一样表征炉渣氧化性,而 且比实测apet0精度更高. 关键词铁氧化物:质量作用浓度:活度系数:共存理论:结构单元 分类号TF01 Expression of oxidation ability for metallurgical slags based on the ion and molecule coexistence theory LI Peng-cheng2),LI Jin-yan2),ZHANG Meng),ZHANG Jian-liang),ZHANG Jian),YANG Xue-min24 1)State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,Beijing 100083,China 2)State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China 3)Beijing Metallurgical Equipment Research Design Institute Company Limited,China Metallurgical Group Corporation,Beijing 100029.China Corresponding author,E-mail:yangxm71@home.ipe.ac.cn ABSTRACT The defined oxidation ability of metallurgical slag based on the ion and molecule coexistence theory (IMCT),i.e.,the comprehensive mass action concentration of iron oxides Nre,o,was verified by comparing the calculated NFeo and the reported activity of iron oxides areo in selected 14 slag systems.To calculate NFeo in the selected slag systems,a thermodynamic model for calculating the mass action concentrations of structural units in CaO-SiO2-MgO- FeO-Fe2O3-MnO-Al2O3-P2Os type slag systems,i.e.,the IMCT-N:thermodynamic model was developed.Nre,o in the other 13 slag systems can be obtained by simplifing this IMCT-N.It is shown that the defined comprehensive mass action concentration of iron oxides NFe o is more accurate than the measured activity of iron oxides aFero in characterizing the oxidation ability of the selected FeO-containing slag systems. KEY WORDS iron oxides;mass action concentration;activity coefficients;coexistence theory;structural units 炉渣铁氧化物活度ap®,0是表征熔渣或钢液氧 诸多适应于不同渣系的ae,0预报模型,譬如Mon- 化性的重要参数-1).为了精确表征各种渣系氧 tecarlo模型6、Sommerville模型、Ottonello模 化能力,众多学者对are,o进行实验测量并建立了 型8、MVM模型4、EMF模型19-2、缔合物 收稿日期:2012-11-19 基金项目:国家自然科学基金资助项目(61174186)
第 35 卷 第 12 期 北 京 科 技 大 学 学 报 Vol. 35 No. 12 2013 年 12 月 Journal of University of Science and Technology Beijing Dec. 2013 基于离子和分子共存理论的炉渣氧化能力表征 李鹏程1,2),李晋岩1,2),张 盟3),张建良1),张 鉴1),杨学民2) 1) 北京科技大学钢铁冶金新技术国家重点实验室,北京 100083 2) 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190 3) 北京中冶设备研究设计总院有限公司,北京 100029 通信作者,E-mail: yangxm71@home.ipe.ac.cn 摘 要 选用文献报道的 14 个渣系铁氧化物活度 aFet O 作为基础实验数据,验证了基于炉渣离子 – 分子共存理论 (IMCT) 所定义的铁氧化物综合质量作用浓度 NFet O 表征炉渣氧化性的可能性和精度. 为了得到 14 个渣系的 NFet O, 建立了 CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 渣系的 IMCT-Ni 模型,其他 13 个渣系 NFet O 可由该渣系的 IMCT-Ni 模型经简化得到. 结果表明,铁氧化物综合质量作用浓度 NFet O 不仅可像活度 aFet O 一样表征炉渣氧化性,而 且比实测 aFet O 精度更高. 关键词 铁氧化物;质量作用浓度;活度系数;共存理论;结构单元 分类号 TF01 Expression of oxidation ability for metallurgical slags based on the ion and molecule coexistence theory LI Peng-cheng1,2), LI Jin-yan1,2), ZHANG Meng3), ZHANG Jian-liang1), ZHANG Jian1), YANG Xue-min2) 1) State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China 2) State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3) Beijing Metallurgical Equipment Research & Design Institute Company Limited, China Metallurgical Group Corporation, Beijing 100029, China Corresponding author, E-mail: yangxm71@home.ipe.ac.cn ABSTRACT The defined oxidation ability of metallurgical slag based on the ion and molecule coexistence theory (IMCT), i.e., the comprehensive mass action concentration of iron oxides NFet O, was verified by comparing the calculated NFet O and the reported activity of iron oxides aFet O in selected 14 slag systems. To calculate NFet O in the selected slag systems, a thermodynamic model for calculating the mass action concentrations of structural units in CaO-SiO2-MgOFeO-Fe2O3-MnO-Al2O3-P2O5 type slag systems, i.e., the IMCT-Ni thermodynamic model was developed. NFet O in the other 13 slag systems can be obtained by simplifing this IMCT-Ni. It is shown that the defined comprehensive mass action concentration of iron oxides NFet O is more accurate than the measured activity of iron oxides aFet O in characterizing the oxidation ability of the selected FetO-containing slag systems. KEY WORDS iron oxides; mass action concentration; activity coefficients; coexistence theory; structural units 炉渣铁氧化物活度 aFetO 是表征熔渣或钢液氧 化性的重要参数 [1−15] . 为了精确表征各种渣系氧 化能力,众多学者对 aFetO 进行实验测量并建立了 诸多适应于不同渣系的 aFetO 预报模型,譬如 Montecarlo 模型 [16]、Sommerville 模型 [17]、Ottonello 模 型 [18]、MIVM 模型 [14]、EMF 模型 [19−21]、缔合物 收稿日期:2012-11-19 基金项目:国家自然科学基金资助项目 (51174186) DOI:10.13374/j.issn1001-053x.2013.12.001
.1570 北京科技大学学报 第35卷 模型22-23、拟化学模型24-32、正规溶液模型33 反应方程式、标准摩尔Gibbs自由能、物质的量、 和离子模型B4-3对.其中部分模型已经被应用于商 质量作用浓度和反应平衡常数总结如表2. 业软件如FactSage和MTDATA,并可较准确预报 100g炉渣中结构单元总平衡物质的量∑n:可 多组元复杂渣系的平衡反应计算3.然而,大多数 由下式计算: ae,o预报模型均涉及人工拟合或定义的参数,适 ∑n=2m1+n2+2n+2n4+5+2n6+n7+ns+ 用范围有限,无法推广到所有渣系 nc1+nc2+···+nc36. ) 结构单元的质量作用浓度N6-8,37-41定义为 为了验证基于炉渣离子和分子共存理论 封闭体系中结构单元i的平衡物质的量与所有结构 (ICT)6-8,37-4纠提出的综合铁氧化质量作用浓 单元总的平衡物质的量之比,炉渣中结构单元i或 度NFe,O表征炉渣氧化性的可能性和精度,本研究 离子对(Me2++02-)的N:可由下式计算: 建立了以CaO-Si02-Mg0-FeO-Fe2O3-Mn0-Al2O3- ni P2O5渣系为代表的MCT-N:模型,并选用文献 N,二ni (2) 报道的14种不同渣系实测铁氧化物活度ape:0与 NMeo NMe2+,Meo No2-,Meo IMCT-VN,模型计算的Nre,o进行比较,其余13种 PMe+Meo+no2-.Me2nMeO 渣系的IMCT-N:模型可由该模型简化得到.研究 ∑ni ∑n (3) 结果可望为表征复杂治金渣系氧化性提供一种基 100 g CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3- 于IMCT的新方法. P2O5渣系8种组元的质量守恒方程可表征为 b1=(N1+3Ne+2Nc2+Ne3+3Ne4+ 114种含Fe0渣系中铁氧化物的活度 12Ne5 Nc6 Ne7 Nes 2Nc18 Nc19+ 从相关文献中可查找到14种含Fe0的渣系: Ne20+Ne21+2Ne22+3Ne23+2Nc25+ Ca0-Fe0-Fe20,(s1)、Ca0-Si02-Fe0-Fe20,(s2)、 2Ne29+3Ne3o+4Ne31)ni=(Ni+ CaO-SiO2-MgO-FeO-Al2O.[10](s3)CaO-SiO2-FeO- 3KN3N2+2KN2N2+KeNN2+ Fe2O3-MnO [11](s4).CaO-SiO2-MgO-FeO-Fe2O3- 3K9NN,+12K号NN7+K品N1N+ Al20g2(s5)、Si02-Fe0-Fe203g-Mn04(s6)、Ca0- KeNN3+KNN9+2KesN?N2N7+ SiO2-MgO-FeO-P2O13](s7)MgO-FeO-Fe2O3- KegNN7N2+KoNN2N3 K81NN3N2+ P20,同(s8)、Ca0-Si02-Fe04,21(s9)、Ca0-Fe0- 2K82NN3N好+3K8NNN+ Fe20g-P20,同(s10)、Si02-Fe0-Fe20,9(s11、Ca0- 2K85N2N5+2KgN2N8+3KoNiN8+ Si02-Mg0-Fe:0-A20,(s12)、Ca0-Si02-Mg0- 4K31N4Ns)∑n:=n吧ao, Fe:O-Al2O4](s13)CaO-SiOz-MgO-FeO-Fe2O3- (4) Mm0-Al203-P20,可(s14).本文将这14种渣系归纳 b2 =(N2 Nc1 Ne2 Nc3 Neg Ne1o Ne12+ 为CaO-SiO2-Mg0-Fe0-Fe203-Mn0-Al203-P20,可 Nc14+Nc15+2Nc17+Nc18+2Nc19+Ne20+ 并建立MCT-N:模型计算Nre,o.表1列出了上 2Nc21+2Ne22+2Ne23+5Nc24)∑n:=(N2+ 述14种含Fe0渣系组元的成分范围、实验温度范 K号NN2+K8NN2+K8N1N2+K号N2N+ 围、实验次数和文献来源,共计656组数据. KeoN2N3+Ke2N2N2+Ke4N2N6+KesN2Na+ 2Ke7N2N+KesN2N2N7+2kegNN2N7+ 2 基于CaO-SiO2-MgO-FeO-Fe2O3- KeoNN2N3 +2Ke1N1N3N2+2K2N2N2N3+ MnO-Al2O3-P2O5渣系建立的IMCT- 2K3gNNN5K84N学NN)∑ni=nSo2, (5) N:模型 -(N+2N+Nao+N+No+Nat 100 g CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3- Vc22+Nc23+2Nc24+Ne27+2Ne35+3Nc36) P2O5渣系中上述8种组元CaO、SiO2、MgO、FeO、 ∑n:=(5N3+2K8N2学+KaN2N3+ Fe2O3、MnO、Al2O3和P2O5的初始物质的量分 KeN3N7+KoN1N2Ns +K8NiN3N2+ 别为b1=n吧a0、b2=n唱io2、bg=n吸g0、b4= Ke2N2N2N3 KegN3N2N3+2K4N3N2N2+ n唱0bs=n唱e2oa、bg=n唱in0b,=nAlaOa和 K7N3N2KN3N8+3K6NN8) bs=n唱,0·同时,该渣系的36种复杂分子的化学 ∑n:=nMgO (6)
· 1570 · 北 京 科 技 大 学 学 报 第 35 卷 模型 [22−23]、拟化学模型 [24−32]、正规溶液模型 [33] 和离子模型 [34−35] . 其中部分模型已经被应用于商 业软件如 FactSage 和 MTDATA,并可较准确预报 多组元复杂渣系的平衡反应计算 [36] . 然而,大多数 aFetO 预报模型均涉及人工拟合或定义的参数,适 用范围有限,无法推广到所有渣系. 为 了 验 证 基 于 炉 渣 离 子 和 分 子 共 存 理 论 (IMCT)[6−8,37−41] 提出的综合铁氧化质量作用浓 度 NFetO 表征炉渣氧化性的可能性和精度,本研究 建立了以 CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3- P2O5 渣系为代表的 IMCT-Ni 模型,并选用文献 报道的 14 种不同渣系实测铁氧化物活度 aFetO 与 IMCT-Ni 模型计算的 NFetO 进行比较,其余 13 种 渣系的 IMCT-Ni 模型可由该模型简化得到. 研究 结果可望为表征复杂冶金渣系氧化性提供一种基 于 IMCT 的新方法. 1 14 种含 FetO 渣系中铁氧化物的活度 从相关文献中可查找到 14 种含 FetO 的渣系: CaO-FeO-Fe2O [3] 3 (s1)、CaO-SiO2-FeO-Fe2O [9] 3 (s2)、 CaO-SiO2-MgO-FeO-Al2O [10] 3 (s3)、CaO-SiO2-FeOFe2O3-MnO [11] (s4)、 CaO-SiO2-MgO-FeO-Fe2O3- Al2O [12] 3 (s5)、SiO2-FeO-Fe2O3-MnO [4] (s6)、CaOSiO2-MgO-FeO-P2O [13] 5 (s7)、 MgO-FeO-Fe2O3- P2O [5] 5 (s8)、CaO-SiO2-FeO [14,21] (s9)、CaO-FeOFe2O3-P2O [5] 5 (s10)、SiO2-FeO-Fe2O [9] 3 (s11)、CaOSiO2-MgO-FetO-Al2O [1] 3 (s12)、 CaO-SiO2-MgOFetO-Al2O [14] 3 (s13) 和 CaO-SiO2-MgO-FeO-Fe2O3- MnO-Al2O3-P2O [7] 5 (s14). 本文将这 14 种渣系归纳 为 CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O [7] 5 并建立 IMCT-Ni 模型计算 NFetO. 表 1 列出了上 述 14 种含 FetO 渣系组元的成分范围、实验温度范 围、实验次数和文献来源,共计 656 组数据. 2 基于CaO-SiO2-MgO- FeO-Fe2O3- MnO-Al2O3-P2O5 渣系建立的 IMCTNi 模型 100 g CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3- P2O5 渣系中上述 8 种组元 CaO、SiO2、MgO、FeO、 Fe2O3、MnO、Al2O3 和 P2O5 的初始物质的量分 别为 b1 = n 0 CaO、b2 = n 0 SiO2、b3 = n 0 MgO、b4 = n 0 FeO、b5 = n 0 Fe2O3、b6 = n 0 MnO、b7 = n 0 Al2O3 和 b8 = n 0 P2O5 . 同时,该渣系的 36 种复杂分子的化学 反应方程式、标准摩尔 Gibbs 自由能、物质的量、 质量作用浓度和反应平衡常数总结如表 2. 100 g 炉渣中结构单元总平衡物质的量 Pni 可 由下式计算 X : ni = 2n1 + n2 + 2n3 + 2n4 + n5 + 2n6 + n7 + n8+ nc1 + nc2 + · · · + nc36. (1) 结构单元的质量作用浓度 N [6−8,37−41] i 定义为 封闭体系中结构单元 i 的平衡物质的量与所有结构 单元总的平衡物质的量之比,炉渣中结构单元 i 或 离子对 (Me2++O2−) 的 Ni 可由下式计算: Ni = P ni ni , (2) NMeO = NMe2+,MeO + NO2−,MeO = nMe2+,MeO P + nO2−,MeO ni = 2 P nMeO ni . (3) 100 g CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3- P2O5 渣系 8 种组元的质量守恒方程可表征为 b1 = (1 2 N1 + 3Nc1 + 2Nc2 + Nc3 + 3Nc4+ 12Nc5 + Nc6 + Nc7 + Nc8 + 2Nc18 + Nc19+ Nc20 + Nc21 + 2Nc22 + 3Nc23 + 2Nc25+ 2Nc29 + 3Nc30 + 4Nc31) Pni = (1 2 N1+ 3K ª c1N3 1 N2 + 2K ª c2N2 1 N2 + K ª c3N1N2+ 3K ª c4N3 1 N7 + 12K ª c5N12 1 N7 7 + K ª c6N1N7+ K ª c7N1N2 7 + K ª c8N1N6 7 + 2K ª c18N2 1 N2N7+ K ª c19N1N7N2 2 + K ª c20N1N2N3 + K ª c21N1N3N2 2 + 2K ª c22N2 1 N3N2 2 + 3K ª c23N3 1 N2 2 N3+ 2K ª c25N2 1 N5 + 2K ª c29N2 1 N8 + 3K ª c30N3 1 N8+ 4K ª c31N4 1 N8) Pni = n 0 CaO, (4) b2 = (N2 + Nc1 + Nc2 + Nc3 + Nc9 + Nc10 + Nc12+ Nc14 + Nc15 + 2Nc17 + Nc18 + 2Nc19 + Nc20+ 2Nc21 + 2Nc22 + 2Nc23 + 5Nc24) Pni = (N2+ K ª c1N3 1 N2 + K ª c2N2 1 N2 + K ª c3N1N2 + K ª c9N2N2 3 + K ª c10N2N3 + K ª c12N2N2 4 + K ª c14N2N6 + K ª c15N2N2 6 + 2K ª c17N2 2 N3 7 + K ª c18N2 1 N2N7 + 2K ª c19N1N2 2 N7+ K ª c20N1N2N3 + 2K ª c21N1N3N2 2 + 2K ª c22N2 1 N2 2 N3+ 2K ª c23N3 1 N2 2 N + 3 5K ª c24N2 3 N2 7 N5 2 ) Pni = n 0 SiO2 , (5) b3 = (1 2 N3 + 2Nc9 + Nc10 + Nc11 + Nc20 + Nc21+ Nc22 + Nc23 + 2Nc24 + Nc27 + 2Nc35 + 3Nc36)· Pni =(1 2 N3 + 2K ª c9N2N2 3 + K ª c10N2N3+ K ª c11N3N7 + K ª c20N1N2N3 + K ª c21N1N3N2 2 + K ª c22N2 1 N2 2 N3 + K ª c23N3 1 N2 2 N3 + 2K ª c24N2 3 N2 7 N5 2 + K ª c27N3N + 5 2K ª c35N2 3 N8 + 3K ª c36N3 3 N8)· Pni = n 0 MgO, (6)
第12期 李鹏程等:基于离子和分子共存理论的炉渣氧化能力表征 .1571· 表1文献报道的14种含FeO渣系比较 Table 1 Summary of selected 14 FerO-containing slag systems 序号 渣系 炉渣成分(质量分数)/% 实验温实验文献 CaO SiO2 MgO FeO Fe203 MnO Al203 P205 度/K次数 来源 81 CaO-FeO-Fe203 4.32 0 0 53.959.84 0 0 0 1673 19 3 29.03 85.51 17.01 s2 CaO-SiO2- 2.80 16.50 0 22.600.40 0 0 0 1531 65 9 FeO-Fe2Os 35.70 53.00 70.80 3.40 1643 s3 CaO-SiO2-MgO- 28.6029.6005.00 2.00 0 0 12.00 0 1673 48 [10] FeO-Al2Os 46.60 37.4 20.00 10.00 CaO-SiO2-FeO- 2.20 20.90 0 24.300.70 3.90 0 0 1523 75 [1叫 Fe203-MnO 32.20 50.40 64.80 4.60 15.70 1647 s5 Ca0-SiO2-Mg0-28.42 30.79 16.420.65 0.03 0 6.28≈ 0 1823 17 [12] FeO-Fe2O3-Al2O3 40.45 36.53 29.72 4.74 1.13 8.20 s6 SiO2-FeO- 0 4.70 0 3.99≈ 0.471.00 0 1723 30 [4 Fe2O3-MnO 40.40 78.05 10.40 70.75 s7 Cao-SiO2-MgO- 19.67 8.86 2.78 6.44~ 0 0 1.23 1873 108 [13 FeO-P2O5 57.87 30.54 23.90 51.98 8.71 1923 s8 MgO-FeO-205 0 0 1.20 46.511.97 0 14.80~ 1673 35 5 Fe203-P 15.23 76.52 5.98 35.08 s9 Cao-SiO2-FeO 0.95 1.20 0 4.43~ 0 0 0 0 1873 52 [14,42] 46.14 59.90 90.12 s10 CaO-FeO- 0.42~ 0 0 38.491.09 0 0 11.45 1673 54 [5 Fe2O3-P2O5 22.84 80.83 7.61 37.59 s11 SiO2-FeO-Fe203 0 18.20 0 63.800.40 0 0 0 1531 21 9 35.80 78.30 3.80 1643 s12 Cao-SiO2-MgO- 13.80 0.80 0.48 0.93 0.08 0 9.66 1723 76 FetO-Al2O3 53.97 14.79 9.18 57.25 22.04 34.66 s13 Cao-SiO2- 9.70 11.11 0 15.81 6.30 0 0 1.05 1573 29 15) FetO-P205 49.82 49.82 52.42 22.81 4.63 s14* Cao-SiO2-MgO-36.20~ 9.10 6.19~ 5.56 8.810.67 1.70 1.01 1929 27 t FeO-Fe2O3-MnO- 53.02 19.21 9.25 16.47 27.59 1.28 4.34 1.70 1986 Al203-P205 b4=(N +2Ner2+Nels Ne26 3Ne32+4Ne33). b7 (N7 Nc4 7Ne5 Nc6 2Ne7 +6Ncs+ 1 Ne11+Ne13+Ne16+3Nc17+Nc18+Nc19+ ∑m=(专M4+2K82N+KgV4N,+ 2Ne24)∑ni=(N?+KaNN?+7K号N2N9+ K86NAN5+3K2N3Ns+4KNANs) KeNN7+2KNN2+6KeNN9+KeN3N7 ∑n=n唱o, +K3N4N?+K6N6N?+3K,N2W9+ (7) KesN?N2N7+KeNN2N7+2KN3N2NS) b5 (N5 Nc25 Nc26 Nc27 Ne28)>ni ∑n:=nAl203' 0) (Ns KesN1N5 Ke6NaN5 KeN3N5+ bs =(Ns Ne29 Ne30 Ne31 Nxc32 Nc33+ K3sN6Ns)∑n=ne2oa' Ne34 Ne35 Nc36)>ni =(Ns Keg NiNs+ (8) KeoN3Ns+KeNiNs+Ke2NNs+KeaNANs +KeNaNs +kesN3Ns +KeNNs)- bg=(专%+e4+2Nes+V.16+N28+3Ne3a】 ∑n:=n唱20s' ∑m=(6+K:%+2KNG+ (11) Ke6N5N7+KesN6N5 +3KNNs) 平衡条件下CaO-SiO2-Mg0-FeO-Fe2O3-MnO- ∑ni=n唱ino, A12O3-P2O5渣系所有结构单元的摩尔分数之和等 (9) 于1.0.据此,可得到
第 12 期 李鹏程等:基于离子和分子共存理论的炉渣氧化能力表征 1571 ·· 表 1 文献报道的 14 种含 FetO 渣系比较 Table 1 Summary of selected 14 FetO-containing slag systems 序号 渣系 炉渣成分 (质量分数)/% 实验温 实验 文献 CaO SiO2 MgO FeO Fe2O3 MnO Al2O3 P2O5 度/ K 次数 来源 s1 CaO-FeO-Fe2O3 4.32∼ 0 0 53.95∼ 9.84∼ 0 0 0 1673 19 [3] 29.03 85.51 17.01 s2 CaO-SiO2- 2.80∼ 16.50∼ 0 22.60∼ 0.40∼ 0 0 0 1531∼ 65 [9] FeO-Fe2O3 35.70 53.00 70.80 3.40 1643 s3 CaO-SiO2-MgO- 28.60∼ 29.60∼0 5.00∼ 2.00∼ 0 0 12.00 0 1673 48 [10] FeO-Al2O3 46.60 37.4 20.00 10.00 s4 CaO-SiO2-FeO- 2.20∼ 20.90∼ 0 24.30∼ 0.70∼ 3.90∼ 0 0 1523∼ 75 [11] Fe2O3-MnO 32.20 50.40 64.80 4.60 15.70 1647 s5 CaO-SiO2-MgO- 28.42∼ 30.79∼ 16.42∼ 0.65∼ 0.03∼ 0 6.28∼ 0 1823 17 [12] FeO-Fe2O3-Al2O3 40.45 36.53 29.72 4.74 1.13 8.20 s6 SiO2-FeO- 0 4.70∼ 0 3.99∼ 0.47∼ 1.00∼ 0 0 1723 30 [4] Fe2O3-MnO 40.40 78.05 10.40 70.75 s7 CaO-SiO2-MgO- 19.67∼ 8.86∼ 2.78∼ 6.44∼ 0 0 0 1.23∼ 1873∼ 108 [13] FeO-P2O5 57.87 30.54 23.90 51.98 8.71 1923 s8 MgO-FeO-2O5 0 0 1.20∼ 46.51∼ 1.97∼ 0 0 14.80∼ 1673 35 [5] Fe2O3-P 15.23 76.52 5.98 35.08 s9 CaO-SiO2-FeO 0.95∼ 1.20∼ 0 4.43∼ 0 0 0 0 1873 52 [14,42] 46.14 59.90 90.12 s10 CaO-FeO- 0.42∼ 0 0 38.49∼ 1.09∼ 0 0 11.45∼ 1673 54 [5] Fe2O3-P2O5 22.84 80.83 7.61 37.59 s11 SiO2-FeO-Fe2O3 0 18.20∼ 0 63.80∼ 0.40∼ 0 0 0 1531∼ 21 [9] 35.80 78.30 3.80 1643 s12 CaO-SiO2-MgO- 13.80∼ 0.80∼ 0.48∼ 0.93∼ 0.08∼ 0 9.66∼ 0 1723 76 [1] FetO-Al2O3 53.97 14.79 9.18 57.25 22.04 34.66 s13 CaO-SiO2- 9.70∼ 11.11∼ 0 15.81∼ 6.30∼ 0 0 1.05∼ 1573 29 [15] FetO-P2O5 49.82 49.82 52.42 22.81 4.63 s14* CaO-SiO2-MgO- 36.20∼ 9.10∼ 6.19∼ 5.56∼ 8.81∼ 0.67∼ 1.70∼ 1.01∼ 1929∼ 27 [7] FeO-Fe2O3-MnO- 53.02 19.21 9.25 16.47 27.59 1.28 4.34 1.70 1986 Al2O3-P2O5 b4 = (1 2 N4 + 2Nc12 + Nc13 + Nc26 + 3Nc32 + 4Nc33)· Pni = (1 2 N4 + 2K ª c12N2N2 4 + K ª c13N4N7+ K ª c26N4N5 + 3K ª c32N3 4 N8 + 4K ª c33N4 4 N8)· Pni = n 0 FeO, (7) b5 = (N5 + Nc25 + Nc26 + Nc27 + Nc28) Pni = (N5 + K ª c25N1N5 + K ª c26N4N5 + K ª c27N3N5+ K ª c28N6N5) Pni = n 0 Fe2O3 , (8) b6 = (1 2 N6 + Nc14 + 2Nc15 + Nc16 + Nc28 + 3Nc34)· Pni = (1 2 N6 + K ª c14N2N6 + 2K ª c15N2N2 6 + K ª c16N5N7 + K ª c28N6N5 + 3K ® c34N3 6 N8)· Pni = n 0 MnO, (9) b7 = (N7 + Nc4 + 7Nc5 + Nc6 + 2Nc7 + 6Nc8+ Nc11 + Nc13 + Nc16 + 3Nc17 + Nc18 + Nc19+ 2Nc24) Pni = (N7 + K ª c4N3 1 N7 + 7K ª c5N12 1 N7 7 + K ª c6N1N7 + 2K ª c7N1N2 7 + 6K ª c8N1N6 7 + K ª c11N3N7 +K ª c13N4N7 + K ª c16N6N7 + 3K ª c17N2 2 N3 7 + K ª c18N2 1 N2N7 + K ª c19N1N2 2 N7 + 2K ª c24N2 3 N2 7 N5 2 )· Pni = n 0 Al2O3 , (10) b8 = (N8 + Nc29 + Nc30 + Nc31 + Nxc32 + Nc33+ Nc34 + Nc35 + Nc36) Pni = (N8 + K ª c29N2 1 N8+ K ª c30N3 1 N8 + K ª c31N4 1 N8 + K ª c32N3 4 N8 + K ª c33N4 4 N8 +K ª c34N3 6 N8 + K ª c35N2 3 N8 + K ª c36N3 3 N8)· Pni = n 0 P2O5 . (11) 平衡条件下 CaO-SiO2-MgO-FeO-Fe2O3-MnOAl2O3-P2O5 渣系所有结构单元的摩尔分数之和等 于 1.0. 据此,可得到
.1572 北京科技大学学报 第35卷 表2CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5渣系中复杂分子的化学反应方程式、标准摩尔Gibbs自由能、物质的量、质 量作用浓度和反应平衡常数 Table 2 Chemical reaction formulas of possibly formed complex molecules,and their standard molar Gibbs free energy changes, amounts of substance,mass action concentrations and equilibrium constants in virtual CaO-SiO2-MgO-FeO-Fe203-MnO-Al2Og- P2Os slag 化学反应方程式 △rG盟.c/Jmol-1) 物质的量/mol 质量作用浓度 Ke 3(Ca2++02-)+ (SiO2)=(3Ca0.Si02) -118826-6.694T nel n3CaO-SiO2 Ne1= ∑n: N3Cao-Sio2 K8二NN2 2(Ca2++02-)+ (Si02)=(2Ca0-Si02) Ne2=Sni ne2 N2Cao-SiO2 Ne2 -102090-24.267T ne2 n2CaO-SiO2 K-N-N2 (Ca2++02-)+ ne3 Nes (SiO2)=(Cao-SiO2) -21757-36.819T ne3 nCao-SiO2 Ne3= ∑ni NCao-SiO2 K8二N1N2 3(Ca2++02-)+ (Al2O3)=(3CaO.Al203) -21757-29.288T ne4 Nea二En =N3CaO-Al203 Ne4 K=NSN7 12(Ca2++02-)+7(Al203)= Nes (12Ca0.7A203) 617977-612.119T ne5 n12Ca0-7Al2O3 ne5 ∑ni =N12Ca0-7Al203 K-NPNI (Ca2++02-)+ (Al203)=(Ca0.Al203) 59413-59.413T N6二Eni ne6 Ne6 ne6 nCaO.Al203 =NCao-Al203 K8二N1N7 (Ca2++02-)+2(A1203)= Ne? (CaO.2A1203) -16736-25.522T ne7 nCa0.2Al2O3 Net= ne7 ∑ni =NCao.2Al203 Ke-NIN (Ca2++02-)+6(A1203)= Ne8 (CaO-6A1203) -22594-31.798T ne8 nCaO-6Al203 Nes二n4 ne8 =NCao-6Al203 Kes-NIN9 2(Mg2++02-)+ (SiO2)=(2Mgo-SiO2) -56902-3.347T Ne二Eni neg =N2MgO-SiO2 Neg ne9 n2Mgo-SiO2 K-N2NS (Mg2++02-)+ (SiO2)=(Mgo-SiO2) 23849-29.706T ne10 nMgO.SiO2 Neo=∑ ne10 .NMgo-SiO2 Ne10 K80二N2Ng (Mg2++02-)+ (Al2O3)=(MgO-Al2O3) -18828-6.276T ne11 nMgO.Al2Oa Nell=ni nell NMgo.Al203 Nel1 K8,=N3N7 2(Fe2++02-)+ (SiO2)=(2FeO.SiO2) -9395-0.227T Ne12= ne12 Ne12 ne12 n2FeO-SiO2 ∑n: N2FeO-SiO2 K82= N2N (Fe2++02-)+ (Al203)=(FeO-Al2O3) -59204+22.343T Ne13=ni nel3 NFeO.Al203 K3= Ne13 ne13 nFeO.Al203 NaN7 (Mm2++02-)+ (SiO2)=(MnO-SiO2) 38911-40.041T ne14 nMnO-SiO2 Nel4=∑ni ne14 NMno-SiO2 Ne14 K4-N2N6 2(Mn2++02-)+ (SiO2)=(2MnO-SiO2) 36066-30.669T Ne15 ne15 n2MnO-SiO2 Nels=ni ne15 N2Mno-SiO2 K8= N2Ng (Mn2++02-)+ (Al2O3)=(MnO-Al2O3) -45116+11.81T ne16 nMnO-Al20a Ne16= ne16 ∑ni NMnO.Al203 K86= Ne16 N6N7 3(A1203)+ 2(Si02)=(3Al2O32Si02) -4351-10.46T Ne17= ne17 ∑ni =N3A1203-2Si02 K8,= Ne17 2(Ca2++02-)+(Al203)+ (Si02)=(2Ca0-Al203Si02)-116315-38.911Tne18=n2Ca0-Al204-sio2Ne18= ne18 =NaCa0-AlOSiO Ks-NiNaNT Ne18 ∑i (Ca2++02-)+(A1203)+ 2(SiO2)=(CaO-Al203-2SiO2) -4184-73.638Tne19=nca0-Al2032sio2Ne19= =NCaO-Ala0a2SO K9= Ne19 ∑ni N1NN7
· 1572 · 北 京 科 技 大 学 学 报 第 35 卷 表 2 CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 渣系中复杂分子的化学反应方程式、标准摩尔 Gibbs 自由能、物质的量、质 量作用浓度和反应平衡常数 Table 2 Chemical reaction formulas of possibly formed complex molecules, and their standard molar Gibbs free energy changes, amounts of substance, mass action concentrations and equilibrium constants in virtual CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3- P2O5 slag 化学反应方程式 ∆rG ª m,ci /(J·mol−1 ) 物质的量/mol 质量作用浓度 K ª ci 3(Ca2++O2−)+ (SiO2)=(3CaO·SiO2) −118826 − 6.694T nc1 = n3CaO·SiO2 Nc1 = P nc1 ni = N3CaO·SiO2 K ª c1 = Nc1 N3 1 N2 2(Ca2++O2−)+ (SiO2)=(2CaO·SiO2) −102090 − 24.267T nc2 = n2CaO·SiO2 Nc2 = P nc2 ni = N2CaO·SiO2 K ª c2 = Nc2 N2 1 N2 (Ca2++O2−)+ (SiO2)=(CaO·SiO2) −21757 − 36.819T nc3 = nCaO·SiO2 Nc3 = P nc3 ni = NCaO·SiO2 K ª c3 = Nc3 N1N2 3(Ca2++O2−)+ (Al2O3) = (3CaO·Al2O3) −21757 − 29.288T nc4 = n3CaO·Al2O3 Nc4 = P nc4 ni = N3CaO·Al2O3 K ª c4 = Nc4 N3 1 N7 12(Ca2++O2−)+7(Al2O3) = (12CaO·7Al2O3) 617977 − 612.119T nc5 = n12CaO·7Al2O3 Nc5 = P nc5 ni = N12CaO·7Al2O3 K ª c5 = Nc5 N12 1 N7 7 (Ca2++O2−)+ (Al2O3)=(CaO·Al2O3) 59413 − 59.413T nc6 = nCaO·Al2O3 Nc6 = P nc6 ni = NCaO·Al2O3 K ª c6 = Nc6 N1N7 (Ca2++O2−)+2(Al2O3)= (CaO·2Al2O3) −16736 − 25.522T nc7 = nCaO·2Al2O3 Nc7 = P nc7 ni = NCaO·2Al2O3 K ª c7 = Nc7 N1N2 7 (Ca2++O2−)+6(Al2O3)= (CaO·6Al2O3) −22594 − 31.798T nc8 = nCaO·6Al2O3 Nc8 = P nc8 ni = NCaO·6Al2O3 K ª c8 = Nc8 N1N6 7 2(Mg2++O2−)+ (SiO2)=(2MgO·SiO2) −56902 − 3.347T nc9 = n2MgO·SiO2 Nc9 = P nc9 ni = N2MgO·SiO2 K ª c9 = Nc9 N2N2 3 (Mg2++O2−)+ (SiO2)=(MgO·SiO2) 23849 − 29.706T nc10 = nMgO·SiO2 Nc10 = P nc10 ni = NMgO·SiO2 K ª c10 = Nc10 N2N3 (Mg2++O2−)+ (Al2O3)=(MgO·Al2O3) −18828 − 6.276T nc11 = nMgO·Al2O3 Nc11 = P nc11 ni = NMgO·Al2O3 K ª c11 = Nc11 N3N7 2(Fe2++O2−)+ (SiO2)=(2FeO·SiO2) −9395 − 0.227T nc12 = n2FeO·SiO2 Nc12 = P nc12 ni = N2FeO·SiO2 K ª c12 = Nc12 N2N2 4 (Fe2++O2−)+ (Al2O3)=(FeO·Al2O3) −59204 + 22.343T nc13 = nFeO·Al2O3 Nc13 = P nc13 ni = NFeO·Al2O3 K ª c13 = Nc13 N4N7 (Mn2++O2−)+ (SiO2)=(MnO·SiO2) 38911 − 40.041T nc14 = nMnO·SiO2 Nc14 = P nc14 ni = NMnO·SiO2 K ª c14 = Nc14 N2N6 2(Mn2++O2−)+ (SiO2)=(2MnO·SiO2) 36066 − 30.669T nc15 = n2MnO·SiO2 Nc15 = P nc15 ni = N2MnO·SiO2 K ª c15 = Nc15 N2N2 6 (Mn2++O2−)+ (Al2O3)=(MnO·Al2O3) −45116 + 11.81T nc16 = nMnO·Al2O3 Nc16 = P nc16 ni = NMnO·Al2O3 K ª c16 = Nc16 N6N7 3(Al2O3)+ 2(SiO2)=(3Al2O3·2SiO2) −4351 − 10.46T nc17 = n3Al2O3·2SiO2 Nc17 = P nc17 ni = N3Al2O3·2SiO2 K ª c17 = Nc17 N2 2 N3 7 2(Ca2++O2−)+(Al2O3)+ (SiO2) = (2CaO·Al2O3·SiO2) −116315 − 38.911T nc18 = n2CaO·Al2O3·SiO2 Nc18 = P nc18 ni = N2CaO·Al2O3·SiO2 K ª c18 = Nc18 N2 1 N2N7 (Ca2++O2−)+(Al2O3)+ 2(SiO2) = (CaO·Al2O3·2SiO2) −4184 − 73.638T nc19 = nCaO·Al2O3·2SiO2 Nc19 = P nc19 ni = NCaO·Al2O3·2SiO2 K ª c19 = Nc19 N1N2 2 N7
第12期 李鹏程等:基于离子和分子共存理论的炉渣氧化能力表征 ·1573· 续表 Contnued 化学反应方程式 △G0/(Jmol-1) 物质的量/mol 质量作用浓度 Ke (Ca2++02-)+(0Mg2++02-)+ Ne20= Te20二 ∑n (SiO2)=(CaO-Mgo-SiO2) -124683+3.766T ne20 nCaO-Mgo-SiO2 NCaO-Mgo-SiO2 Ne20 K80=-N1N2N3 (Ca2++02-)+(Mg2++02-)+ Ne21=2e21= ∑n Ne21 2(SiO2)=(CaO-Mgo.2SiO2) -80333-51.882T ne21 nCaO-MgO-2SiO2 NCao-Mgo-2Si02 Ke-NIN3N3 2(Ca2++02-)+(Mg2++02-)+ Ne22= ne22 ∑n: 2(Si02)=(2Ca0-Mg02Si02)-73638-63.597Tne22=n2ca0-Mg0-2si02 N2CaO-Mgo-2SiO2 Ne22 K2-NiNN3 3Ca2++02-)+(0Mg2++02-)+ Nc23= ne23 ∑n 2(SiO2)=(3Ca0-Mg0-2Si02) -205016-31.798Tne23=n3Ca0-Mg0-2si02 N3Cao-Mgo-2SiO2 Ne23 2(Mg2++02-)+2(A203)+ ne2吵 K3-NNIN3 Ne=ni 5(Si02)=(2Mg0-2Al2035SiO2)-14422-14.808Tne24=n2Mg02A2035Si02 N2MgO.2Al2Oa-5SiO2 Ne24 KA=NININ 2(Ca2++02-)+(Fe203)= (2CaO-Fe2O3) -53137-2.510T ne25 n2CaO-Fe203 Nc25= nixe25 -N2CaO-Fe2O3 Ne25 ∑ni Kes-N-Ns (Fe2++02-)+(Fe203)= (FeO.Fe203) -78451+30.813T ne26 nFeO-Fe203 Ne26= ne26NFeO-Fe2Os Ne26 ∑ni Ke26-NaNs (Mg2++02-)+(Fe203)= (MgO-Fe203) -19246-2.092T ne27 nMgO-Fe203 Nc27= ne27 =NMgO-Fe2O3 Ne27 ∑ni Ke7-N3Ns (Mn2++02-)+(Fe203)= (MnO.Fe203) -35726+13.138T Ne28= ne28 Ne28 ne28 nMnO-Fe203 ∑n: =NMnO-Fe203 K88=N6N6 2(Ca2++02-)+(P205)= (2CaO-P205) -484372-26.569T Ne29 ne29 =n2CaO-P2Os Ne29= ne29 =N2CaO-P2Os ∑ni Ke29-NiNs 3(Ca2++02-)+(P205)= (3Ca0-P205) -709890+6.150T ne30 n3CaO-P20s Nc30= ne30 ∑ni =N3CaO-P20s K80= Ne30 N3Ng 4(Ca2++02-)+(P205)= (4Ca0P20s) -661356-3.473T ne31 n4CaO-P2Os Ne31= ne31 =N4CaO-P20s Ne31 ∑n K81=N4N8 3(Fe2++02-)+(P205)= (3FeO-P20s) -587683-71.706T ne32 n3FeO-P20s Ne32= ne32-N3FeO-P2Os Ne32 ∑ni Ke32-NNs 4Fe2++02-)+(P205)= (4FeO-P2Os) -512251+128.083T ne33 n4FeO-P20s Nc33= ne33 ∑n: =N4FeO-P20s K8= Ne33 NANg 3(Mn2++02-)+(P205)= (3MnO.P20s) -543259+41.812T Ne34= ne34 =N3MnO-P2Os Ne34 ne34 n3MnO-P2Os t K84= NaNs 2(Mg2++02-)+(P205)= (2MgO-P20s) 168369-339.357T ne35 Ne35 nc35=n2Mg0-P205 Ne35= ∑ni =N2Mg0-P2O.K35= NNg 3Mg2++02-)+(P205)= (3MgO-P2Os) -267641-115.186T ne36 n3MgO-P20s Ne36= ne36 Ne36 i N3MgO-P20s Kes6-N:Ns N1+N2+N3+N4++N6+N7+N8+Nc1 式(4)~(12)组成的方程组为CaO-SiO2-Mg0- Ne2++Nc36=N+N2+…+Ns+ FeO-Fe2O3-MnO-Al2O3-P2O5渣系结构单元或离子 对的质量作用浓度计算模型.显然,式(4)~(12) K9NN2+K8NN吃…+K&6NNs= 方程组中包含9个独立方程且有9个未知参数 N1-Ng和∑n.结合式(2)中N的定义联立 ∑N=10. (12) 式(4)~(12)可计算得到N、∑n:和n
第 12 期 李鹏程等:基于离子和分子共存理论的炉渣氧化能力表征 1573 ·· 续表 Contnued 化学反应方程式 ∆rG ª m,ci /(J·mol−1 ) 物质的量/mol 质量作用浓度 K ª ci (Ca2++O2−)+(Mg2++O2−)+ Nc20 = P nc20 ni = (SiO2) = (CaO·MgO·SiO2) −124683 + 3.766T nc20 = nCaO·MgO·SiO2 NCaO·MgO·SiO2 K ª c20 = Nc20 N1N2N3 (Ca2++O2−)+(Mg2++O2−)+ Nc21 = P nc21 ni = 2(SiO2) = (CaO·MgO·2SiO2) −80333 − 51.882T nc21 = nCaO·MgO·2SiO2 NCaO·MgO·2SiO2 K ª c21 = Nc21 N1N3N2 2 2(Ca2++O2−)+(Mg2++O2−)+ Nc22 = P nc22 ni = 2(SiO2) = (2CaO·MgO·2SiO2) −73638 − 63.597T nc22 = n2CaO·MgO·2SiO2 N2CaO·MgO·2SiO2 K ª c22 = Nc22 N2 1 N2 2 N3 3(Ca2++O2−)+(Mg2++O2−)+ Nc23 = P nc23 ni = 2(SiO2) = (3CaO·MgO·2SiO2) −205016 − 31.798T nc23 = n3CaO·MgO·2SiO2 N3CaO·MgO·2SiO2 K ª c23 = Nc23 N3 1 N2 2 N3 2(Mg2++O2−)+2(Al2O3)+ Nc24 = P nc24 ni = 5(SiO2) = (2MgO·2Al2O3·5SiO2) −14422 − 14.808T nc24 = n2MgO·2Al2O3·5SiO2 N2MgO·2Al2O3·5SiO2 K ª c24 = Nc24 N2 3 N2 7 N5 2 2(Ca2++O2−)+(Fe2O3)= (2CaO·Fe2O3) −53137 − 2.510T nc25 = n2CaO·Fe2O3 Nc25 = nPxc25 ni = N2CaO·Fe2O3 K ª c25 = Nc25 N2 1 N5 (Fe2++O2−)+(Fe2O3)= (FeO·Fe2O3) −78451 + 30.813T nc26 = nFeO·Fe2O3 Nc26 = P nc26 ni = NFeO·Fe2O3 K ª c26 = Nc26 N4N5 (Mg2++O2−)+(Fe2O3)= (MgO·Fe2O3) −19246 − 2.092T nc27 = nMgO·Fe2O3 Nc27 = P nc27 ni = NMgO·Fe2O3 K ª c27 = Nc27 N3N5 (Mn2++O2−)+(Fe2O3)= (MnO·Fe2O3) −35726 + 13.138T nc28 = nMnO·Fe2O3 Nc28 = P nc28 ni = NMnO·Fe2O3 K ª c28 = Nc28 N6N5 2(Ca2++O2−)+(P2O5)= (2CaO·P2O5) −484372 − 26.569T nc29 = n2CaO·P2O5 Nc29 = P nc29 ni = N2CaO·P2O5 K ª c29 = Nc29 N2 1 N8 3(Ca2++O2−)+(P2O5)= (3CaO·P2O5) −709890 + 6.150T nc30 = n3CaO·P2O5 Nc30 = P nc30 ni = N3CaO·P2O5 K ª c30 = Nc30 N3 1 N8 4(Ca2++O2−)+(P2O5)= (4CaO·P2O5) −661356 − 3.473T nc31 = n4CaO·P2O5 Nc31 = P nc31 ni = N4CaO·P2O5 K ª c31 = Nc31 N4 1 N8 3(Fe2++O2−)+(P2O5)= (3FeO·P2O5) −587683 − 71.706T nc32 = n3FeO·P2O5 Nc32 = P nc32 ni = N3FeO·P2O5 K ª c32 = Nc32 N3 4 N8 4(Fe2++O2−)+(P2O5)= (4FeO·P2O5) −512251 + 128.083T nc33 = n4FeO·P2O5 Nc33 = P nc33 ni = N4FeO·P2O5 K ª c33 = Nc33 N4 4 N8 3(Mn2++O2−)+(P2O5)= (3MnO·P2O5) −543259 + 41.812T nc34 = n3MnO·P2O5 Nc34 = P nc34 ni = N3MnO·P2O5 K ª c34 = Nc34 N3 6 N8 2(Mg2++O2−)+(P2O5)= (2MgO·P2O5) 168369 − 339.357T nc35 = n2MgO·P2O5 Nc35 = P nc35 ni = N2MgO·P2O5 K ª c35 = Nc35 N2 3 N8 3(Mg2++O2−)+(P2O5)= (3MgO·P2O5) −267641 − 115.186T nc36 = n3MgO·P2O5 Nc36 = P nc36 ni = N3MgO·P2O5 K ª c36 = Nc36 N3 3 N8 N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + Nc1 Nc2 + · · · + Nc36 = N1 + N2 + · · · + N8+ K ª c1N 3 1 N2 + K ª c2N 2 1 N + 2 · · · + K ª c36N 3 3 N8 = XNi = 1.0. (12) 式 (4)∼(12) 组成的方程组为 CaO-SiO2-MgOFeO-Fe2O3-MnO-Al2O3-P2O5 渣系结构单元或离子 对的质量作用浓度计算模型. 显然,式 (4)∼(12) 方程组中包含 9 个独立方程且有 9 个未知参数 N1 − N8 和 Pni . 结合式 (2) 中 Ni 的定义联立 式 (4)∼(12) 可计算得到 Ni、 Pni 和 ni