14线性动态电路的复频域分析 14-1拉普拉斯变换的定义 14-2拉普拉斯变换的基本性质 14-3拉普拉斯反变换的部分分式展开 14-4运算电路 14-5应用拉普拉斯变换法分析线性电路 14-6网络函数的定义 14-7网络函数的极点和零点 14-8极点、零点和冲激响应。 14-9极点、零点和频率响应
14 㓵ᙝࣞᘷ⭫䐥Ⲻགྷ仇ต࠼᷆ 14-3 Პᯟ৽ਈᦒⲴ䜘࠶࠶ᔿኅᔰ 14-5 ᓄ⭘Პᯟਈᦒ⌅࠶᷀㓯ᙗ⭥䐟 14-6 㖁㔌࠭ᮠⲴᇊѹ 14-7 㖁㔌࠭ᮠⲴᶱ⛩઼䴦⛩ 14-2 ᲞᯟਈᦒⲴสᵜᙗ䍘 14-4 䘀㇇⭥䐟 14-1 ᲞᯟਈᦒⲴᇊѹ 14-8 ᶱ⛩ǃ䴦⛩઼ߢ૽◰ᓄ 14-9 ᶱ⛩ǃ䴦⛩઼仁⦷૽ᓄ
14-1拉普拉斯变换的定义 [f()]=(t)e-StdtF(S) S=o jo s为变量 关于积分下限0原函数 象函数 例£K时Kesdt=5Ke-t=S £et时eedt=edt=S £[6(t=nδ()e-sdt-=0δ(t)dt=1 [ee-te-sdt =aast=训=sa S+a
0- f £ [f(t)]=³ f(t)e–Stdt ' =F(S) –л䲀0࠶〟Ҿޣ ֻ 0- f £ [K]=³ Ke–Stdt = Ke–St –S 1 0- f = K S £ [G(t)]=³ G(t)e–Stdt 0- f =³ e –Stdt 0+ f = 1 S =³ G(t)dt 0- 0+ =1 £ [e–Dt ]=³ e –Dt e –Stdt 0- f ³ e –(D+S)tdt 0- f = e –(D+S)t –(S+D) 1 = 0- f S+D 1 = £ [ (t)]=³ (t)e–Stdt 0- f H H 14-1 ᲤᯥᦘⲺᇐѿ S=V + jZ sѪਈ䟿 ࠭ᮠ 䊑࠭ᮠ
14-2拉普拉斯变换的基本性质 一、线性性质 设£[f(=F,(S)£[E2(=Fz(S) £[o1f1()+o2f2()]=01F1(S)+02F2(S) 例:£[kcoswt]=£[0.5k(eiot+e-jo] .5(o+sa》 S =kS+0
£ [D1 f1 (t)+D2 f2 (t)]=D1F1 (S) +D2F2 (S) 䇮 £ [f1 (t)]=F1 (S) £ [f2 (t)]=F2 (S) аǃ㓯ᙗᙗ䍘 ֻ˖£ [kcosZt]= £ [0.5k(ejZt+ e–jZt )] =0.5k( ) S–jZ S+jZ 1 1 + =k S 2+Z2 S 14-2 ᲤᯥᦘⲺะᵢᙝ䍞
二、微分性质 设£f()=F(S) -SF(S)-0-) Lf'(】=Df'()et f(D)e"(-s)e"f(dr =sF(S)-f(0.) ic =Cduc dt 设[u]=Ue(s) i]=tc业]=c[sU.(s)-4,0.)] dt
£ [ ]=SF(S)–f(0-) df(t) dt Ҽǃᗞ࠶ᙗ䍘 䇮 £ [f (t)]=F (S) C C du i =C dt uC C + - iC 䇮 s £ £ £ C C C C C C- [u ]= U (s) du [i ]= [C ]= C[ U (s)- u (0 )] dt - - - - 0 - - 0 0 - £[ ( )] ( ) ( ) - (- ) ( ) ( )- (0 ) f f f c c ³ ³ st st st f t f t e dt f t e s e f t dt sF s f
三、积分性质 设£If(=F(S) £d=专S) ve=fiad :设[ic]=I(s) u.1=id-0)+61因 四、延迟性质 若£[f()=F(S) 则£[f(t-t)】=estF(S) u(t)=(t)-(t-to) u(坊 E[u(t)] =£[&(t)]-£[e(t-t)] 11 e-sto to SS
ഋǃᔦ䘏ᙗ䍘 㤕 £ [f (t)]=F (S) ࡉ] £ f (t-t0 )]=e-st0F (S) u(t) = 0 İ(t) - İ(t - t ) 0 u(t) t0 t 1 0 - £[ ( )] £[ ( )] 1 1 st u t t e s s H 0 £[ ( )] H t t £ [³ f(x)dx]= F(S) 0- t 1 S йǃ〟࠶ᙗ䍘 䇮 £ [f (t)]=F (S) C C ³ 1 u = i dt C 䇮 (0 ) u ³ £ £ £ C C C CC C [i ]= I (s) 1 1 11 [u ]= [ i dt]= u I (s) C s Cs