UFIFT-HEP-10- Classical Electrodynamics Charles B.Thorn! Institute for Fundamental Theory Department of Physics,University of Florida,Gainesville FL 32611 Abstract E-mail address:thornephys.ufl.edu
UFIFT-HEP-10- Classical Electrodynamics Charles B. Thorn1 Institute for Fundamental Theory Department of Physics, University of Florida, Gainesville FL 32611 Abstract 1E-mail address: thorn@phys.ufl.edu
Contents 1 Introduction Y l.1 The Field Concept........·················· 4 1.2 Maxwell's equations:Field Equations of Motion........... 4 1.3 Heaviside-Lorentz (HL)Units 5 l.4 Physical meaning of Maxwell's equations..··....·.··. 5 1.5 Charge conservation 6 1.6 Potentials and Gauge Invariance...... > 2 Electrostatics P 2.1 Point charge and the Dirac delta function 8 2.2 Interfaces between different materials...················ 9 2.3 Uniqueness of electrostatic solutions,.Green's theorem.....···.·.·· 10 2.4 Green functions..·.·················· 11 2.5 Electrostatic energy....·.···· 12 2.6 Capacitance....··········· 12 3 Electrostatic Boundary-Value problems 13 3.1 Method of Images.............. 13 3.2 Method of Separation of Variables.... 15 3.3 Angle Differential Equations......... 20 3.4 Problems with Azimuthal Symmetry 21 3.5 Green function between two concentric spheres. 23 3.6 Conductors with a Conical Singularity 25 3.7 Cylindrical Coordinates and Bessel functions.. 26 3.8 Mathematical Properties of Bessel Functions 28 3.9 Boundary-value problems in cylindrical coordinates ........ 31 3.10 Green functions in cylindrical coordinates..... 32 3.11 A little more wisdom about Green functions 33 3.12 Electrostatics in 2 Dimensions.......... 34 4 The Multipole expansion and Dielectric Materials 39 4.1 Electric Multipoles..... 39 4.2 Electrostatics in Dielectric Materials ·。 42 4.3 Energy and Forces on Dielectrics 43 4.4 Boundary value problems with dielectrics 45 4.5 Models for Xe...··········· 46 5 Magnetostatics 50 5.1 Circular Current Loop······· 51 5.2 Magnetic Multipoles·········· 52 5.3 Magnetic Fields in Magnetic Materials·..···. 53 1 ©2010 by Charles Thorn
Contents 1 Introduction 4 1.1 The Field Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Maxwell’s equations: Field Equations of Motion. . . . . . . . . . . . . . . . . 4 1.3 Heaviside-Lorentz (HL) Units . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Physical meaning of Maxwell’s equations . . . . . . . . . . . . . . . . . . . . 5 1.5 Charge conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Potentials and Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Electrostatics 8 2.1 Point charge and the Dirac delta function . . . . . . . . . . . . . . . . . . . 8 2.2 Interfaces between different materials . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Uniqueness of electrostatic solutions, Green’s theorem . . . . . . . . . . . . . 10 2.4 Green functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Electrostatic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Electrostatic Boundary-Value problems 13 3.1 Method of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Method of Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Angle Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Problems with Azimuthal Symmetry . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Green function between two concentric spheres . . . . . . . . . . . . . . . . . 23 3.6 Conductors with a Conical Singularity . . . . . . . . . . . . . . . . . . . . . 25 3.7 Cylindrical Coordinates and Bessel functions . . . . . . . . . . . . . . . . . . 26 3.8 Mathematical Properties of Bessel Functions . . . . . . . . . . . . . . . . . . 28 3.9 Boundary-value problems in cylindrical coordinates . . . . . . . . . . . . . . 31 3.10 Green functions in cylindrical coordinates . . . . . . . . . . . . . . . . . . . . 32 3.11 A little more wisdom about Green functions . . . . . . . . . . . . . . . . . . 33 3.12 Electrostatics in 2 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 The Multipole expansion and Dielectric Materials 39 4.1 Electric Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Electrostatics in Dielectric Materials . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Energy and Forces on Dielectrics . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Boundary value problems with dielectrics . . . . . . . . . . . . . . . . . . . . 45 4.5 Models for χe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Magnetostatics 50 5.1 Circular Current Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Magnetic Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 Magnetic Fields in Magnetic Materials . . . . . . . . . . . . . . . . . . . . . 53 1 c 2010 by Charles Thorn
5.4 Boundary conditions . 54 5.5 Examples of Magnetic Boundary value Problems........... 5.6 Energy and Magnetic Materials 57 5.7 Models of Xm············· 58 5.8 Faraday's Law.....············· 61 5.9 Inductance.···· 62 5.10 Conductivity and the Quasi-static approximation 64 6 Maxwell's Equations 66 6.1 Ampere-Maxwell Equation in electromagnetic materials............ 66 6.2 Energy and Momentum and Their Conservation ............... 67 6.3 Solving Maxwell's equations with Green Functions .............. 69 6.4 Fields with Harmonic Time Dependence............... 70 6.5 The Dirac Monopole......·..·...·. 72 6.6 Symmetries of Maxwell Equations...... 74 7 Electromagnetic Plane Waves 77 7.1 Reflection and Refraction at a Plane Interface........... 78 7.2 Brewster's Angle.························ 81 7.3 Total Internal Reflection................···....· 81 7.4 Action Principle for Maxwell's Equations.... 81 8 Lorentz Invariance and Special Relativity 83 8.1 Space-time symmetries of the wave equation... 83 8.2 Einstein's Insights........····..······· 84 8.3 Some Kinematical Aspects of Lorentz transformations..··········. 85 8.4 Space-time Tensors and their Transformation Laws 87 8.5 Lorentz covariance of Maxwell's equations................... 90 8.6 Action Principles..·.··.··········· 95 8.7 Some particle motions in electromagnetic fields..... 96 8.8 Electrodynamics of a Scalar Field...... 100 8.9 Lorentz Invariant Superconductivity:The Higgs Mechanism·..····. 104 9 Propagation of Plane waves in Materials 109 9.1 Oscillator model for frequency dependence of a dielectric........... 109 9.2 Conductivity...· 110 9.3 Plasmas and the lonosphere 111 9.4 Group Velocity...·....·. 113 9.5 Causality and Dispersion Relations.·.······.,···· 114 9.6 Causal Propagation.······················· 117 2 ©2010 by Charles Thorn
5.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.5 Examples of Magnetic Boundary value Problems . . . . . . . . . . . . . . . . 54 5.6 Energy and Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.7 Models of χm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.8 Faraday’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.9 Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.10 Conductivity and the Quasi-static approximation . . . . . . . . . . . . . . . 64 6 Maxwell’s Equations 66 6.1 Ampere-Maxwell Equation in electromagnetic materials . . . . . . . . . . . . 66 6.2 Energy and Momentum and Their Conservation . . . . . . . . . . . . . . . . 67 6.3 Solving Maxwell’s equations with Green Functions . . . . . . . . . . . . . . . 69 6.4 Fields with Harmonic Time Dependence . . . . . . . . . . . . . . . . . . . . 70 6.5 The Dirac Monopole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.6 Symmetries of Maxwell Equations . . . . . . . . . . . . . . . . . . . . . . . . 74 7 Electromagnetic Plane Waves 77 7.1 Reflection and Refraction at a Plane Interface . . . . . . . . . . . . . . . . . 78 7.2 Brewster’s Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.3 Total Internal Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.4 Action Principle for Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . 81 8 Lorentz Invariance and Special Relativity 83 8.1 Space-time symmetries of the wave equation . . . . . . . . . . . . . . . . . . 83 8.2 Einstein’s Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8.3 Some Kinematical Aspects of Lorentz transformations . . . . . . . . . . . . . 85 8.4 Space-time Tensors and their Transformation Laws . . . . . . . . . . . . . . 87 8.5 Lorentz covariance of Maxwell’s equations . . . . . . . . . . . . . . . . . . . 90 8.6 Action Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8.7 Some particle motions in electromagnetic fields . . . . . . . . . . . . . . . . . 96 8.8 Electrodynamics of a Scalar Field . . . . . . . . . . . . . . . . . . . . . . . . 100 8.9 Lorentz Invariant Superconductivity: The Higgs Mechanism . . . . . . . . . 104 9 Propagation of Plane waves in Materials 109 9.1 Oscillator model for frequency dependence of a dielectric . . . . . . . . . . . 109 9.2 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.3 Plasmas and the Ionosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.4 Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.5 Causality and Dispersion Relations . . . . . . . . . . . . . . . . . . . . . . . 114 9.6 Causal Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2 c 2010 by Charles Thorn
10 Waveguides and Cavities 118 10.1 The approximation of perfect conductors 118 10.2 Waveguides 119 10.3 Rectangular Waveguide.. 122 10.4 Energy Flow and Attenuation 122 l0.5 Resonant Cavities..··. 125 10.6 Perturbation of Boundary Conditions 128 10.7 Excitation of Waveguide Modes 。。 129 11 Radiation from Localized Sources 133 ll.1 Long Wavelength Limit...........:·· 135 11.2 Beyond the Multipole Expansion 137 11.3 Systematics of the Multipole Expansion..................... 139 11.4 Vector Spherical Harmonics and Multipole Radiation............. 140 12 Scattering of Electromagnetic Waves 143 12.1 Long Wavelength Scattering...... 143 12.2 General Formulation of Scattering..... 145 12.3 The Born Approximation... 146 l2.4 Scattering from a Perfectly Conducting Sphere....,···.. 147 12.5 Short wavelength approximation and diffraction 150 12.6 Short Wavelength Scattering 152 l2.7 The Optical Theorem..·.··. 154 13 Energy Loss and Cherenkov Radiation 157 14 Radiation from a particle in relativistic motion 159 14.1 Lienard-Wiechert Potentials and Fields................ 159 l4.2 Charge in uniform motion···························· 161 l4.3 Charge moving with constant proper acceleration·.············· 162 3 ©2010 by Charles Thorn
10 Waveguides and Cavities 118 10.1 The approximation of perfect conductors . . . . . . . . . . . . . . . . . . . . 118 10.2 Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.3 Rectangular Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.4 Energy Flow and Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.5 Resonant Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.6 Perturbation of Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 128 10.7 Excitation of Waveguide Modes . . . . . . . . . . . . . . . . . . . . . . . . . 129 11 Radiation from Localized Sources 133 11.1 Long Wavelength Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 11.2 Beyond the Multipole Expansion . . . . . . . . . . . . . . . . . . . . . . . . 137 11.3 Systematics of the Multipole Expansion . . . . . . . . . . . . . . . . . . . . . 139 11.4 Vector Spherical Harmonics and Multipole Radiation . . . . . . . . . . . . . 140 12 Scattering of Electromagnetic Waves 143 12.1 Long Wavelength Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 12.2 General Formulation of Scattering . . . . . . . . . . . . . . . . . . . . . . . . 145 12.3 The Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 12.4 Scattering from a Perfectly Conducting Sphere . . . . . . . . . . . . . . . . . 147 12.5 Short wavelength approximation and diffraction . . . . . . . . . . . . . . . . 150 12.6 Short Wavelength Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 12.7 The Optical Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 13 Energy Loss and Cherenkov Radiation 157 14 Radiation from a particle in relativistic motion 159 14.1 Li´enard-Wiechert Potentials and Fields . . . . . . . . . . . . . . . . . . . . . 159 14.2 Charge in uniform motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 14.3 Charge moving with constant proper acceleration . . . . . . . . . . . . . . . 162 3 c 2010 by Charles Thorn
1 Introduction 1.1 The Field Concept We are accustomed to think of matter as built up of particles,whose classical kinematics and dynamics are specified by coordinates (t)and canonical momenta p(t).But electro- dynamics requires a radically different description-Faraday's concept of field. The electric and magnetic fields E(x,t),B(x,t)are 6 dynamical variables that sit at each point in space and change with time.Since the initial fields at different points are independent we are dealing with a continuous infinity of degrees of freedom.This seems like a lot to swallow but it is the most efficient way to deal with the fact that in nature disturbances cannot propagate with infinite velocity. The fields can be measured by observing their influence on a charged particle: dp dt F(x,t)q(E(x,t)+vx B(x,t)), SI (1) dt =Pz,)=gEz,)+是×B(e,。 dp Gauss,Heaviside (2) Here g is the charge carried by the particle and c is the universal speed of light.For arbitrary relativistic velocities,p=mv/v1-v2/c2.In SI units electric and magnetic fields have different units.The SI unit of charge is the Coulomb (1C-lamp-sec=1A s).Currents are easier to control than charge so the standard definition of charge is via the amp (1C =1A.s) defined as that current in two long parallel wires that gives a force of 2 x 10-7N/m when separated by 1 m. 1.2 Maxwell's equations:Field Equations of Motion. ∂B =-V×E,SI (3) Ot E 0Vx B J.SI (4) 0 7.B=0,o7·E=p, SI (5) The SI units of coE and B/uo are Cm-2 and C(sm)-1 respectively.Since E and cB have the same units,it follows that eoloc2 is dimensionless.In fact Maxwell's equations imply that em waves travel at the speed 1/veouo,so couoc2 =1. These equations are roughly parallel to the harmonic oscillator equations d迎-k, dx (6) dt =p with the magnetic field analogous to the coordinates and the electric field analogous to the momentum. ©2010 by Charles Thorn
1 Introduction 1.1 The Field Concept We are accustomed to think of matter as built up of particles, whose classical kinematics and dynamics are specified by coordinates xk(t) and canonical momenta pk (t). But electrodynamics requires a radically different description– Faraday’s concept of field. The electric and magnetic fields E(x,t), B(x,t) are 6 dynamical variables that sit at each point in space and change with time. Since the initial fields at different points are independent we are dealing with a continuous infinity of degrees of freedom. This seems like a lot to swallow but it is the most efficient way to deal with the fact that in nature disturbances cannot propagate with infinite velocity. The fields can be measured by observing their influence on a charged particle: dp dt = F(x,t) = q(E(x,t) + v × B(x,t)), SI (1) dp dt = F(x,t) = q(E(x,t) + v c × B(x,t)), Gauss, Heaviside (2) Here q is the charge carried by the particle and c is the universal speed of light. For arbitrary relativistic velocities, p = mv/ p 1 − v 2/c2 . In SI units electric and magnetic fields have different units. The SI unit of charge is the Coulomb (1C=1amp-sec=1A s). Currents are easier to control than charge so the standard definition of charge is via the amp (1C = 1A·s) defined as that current in two long parallel wires that gives a force of 2 × 10−7N/m when separated by 1 m. 1.2 Maxwell’s equations: Field Equations of Motion. ∂B ∂t = −∇ × E, SI (3) 0 ∂E ∂t = ∇ × B µ0 − J, SI (4) ∇ · B = 0, 0∇ · E = ρ, SI (5) The SI units of 0E and B/µ0 are Cm−2 and C(sm)−1 respectively. Since E and cB have the same units, it follows that 0µ0c 2 is dimensionless. In fact Maxwell’s equations imply that em waves travel at the speed 1/ √0µ0, so 0µ0c 2 = 1. These equations are roughly parallel to the harmonic oscillator equations dp dt = −kx, m dx dt = p (6) with the magnetic field analogous to the coordinates and the electric field analogous to the momentum. 4 c 2010 by Charles Thorn