参考答案习题11.1α|和|b|很大时α,b2不能表示;「α|和|bl很小时机器令α2=0,b?=0,结果除数为0;)+()避免法:先求c=max(lal,|bl),再算y=(3)9046×10t;2.(1)15.87;(2)16.00;(5)9046×10*(4)9047x10*:(6)1000;(7) 10013.1n2~0.6934.1.41,1.414,1.4142,1.41421;3,4,5,6;1.42,1.414,1.41422;1.4142,1.414和1.4142是√2的近似有效数(2)0.5x10-,0.9x10-3,3;5.(1)0.5,0.02%,4;(4)0.5x10-3,0.2x10-,4(3)5,0.3x10-3,4;(5)0.05,0.5×10,56.分别具有4位、3位和3位有效数字7.绝对误差限0.01,相对误差限为18.0.9659×10-,至少三位(实际五位)9.0.005厘米.10.绝对误差限为27.50(米3),相对误差限为1.1×10-311.方法1:直接相减0.10000×10~;111~0.10111×10-5方法2:恒等变形,近似计算:994995-994×995而精确值是0.10110916×10~,可见方法1不如方法2好.主要原因是:方法1将两个相近的数直接相减,造成了有效数字的损失1~0.01786312.x=28+783~55.982,xx+1dt13.=arctg(tg(arctg(N +1)-arctgN))1+t?1(N+I)-N=arctg= arctg 1+(N +1)N1+(N +1)N14.(1)B,避免相近数相减;(2)C,避免小除数和相近数相减;1
1 参考答案 习题 1 1. | a |和|b|很大时 2 a , 2 b 不能表示;| a |和|b|很小时机器令 2 a 0 , 2 b 0,结 果除数为 0; 避免法:先求c a b max | |, | | ,再算 2 2 a a b y c c c . 2.(1)15.87; (2)16.00; (3) 4 9046 10 ; (4) 4 9047 10 ; (5) 4 9046 10 (6)1000; (7)1001 3.1 2 0.693 n . 4.1.41, 1.414, 1.4142, 1.41421; 3, 4, 5, 6; 1.42, 1.414, 1.4142, 1.41422; 1.414 和 1.4142 是 2 的近似有效数. 5.(1)0.5, 0.02%, 4; (2) 5 3 0.5 10 , 0.9 10 , 3; (3) 3 5, 0.3 10 , 4; (4) 3 3 0.5 10 , 0.2 10 , 4 ; (5) 4 0.05, 0.5 10 , 5 . 6.分别具有 4 位、3 位和 3 位有效数字. 7.绝对误差限0.01,相对误差限为 1 8. 4 0.9659 10 ,至少三位(实际五位) 9.0.005 厘米. 10.绝对误差限为 3 27.50( ) 米 ,相对误差限为 3 1.1 10 11.方法 1:直接相减 5 0.10000 10 ; 方法 2:恒等变形,近似计算: 1 1 1 5 0.10111 10 994 995 994 995 而精确值是 5 0.10110916 10 ,可见方法 1 不如方法 2 好.主要原因是:方法 1 将两 个相近的数直接相减,造成了有效数字的损失. 12. 1 2 1 1 x x 28 783 55.982, 0.017863. x 13. 1 2 ( ( ( 1) )) 1 N N dt arctg tg arctg N arctgN t ( 1) 1 1 ( 1) 1 ( 1) N N arctg arctg N N N N 14.(1)B,避免相近数相减; (2)C,避免小除数和相近数相减;
(3)A,避免相近数相减:(4)C,避免小除数和相近数相减,且节省对数运算15.(1)A,(2) B.16. (1) y=x-5, (+9)y+7)y+6)y+4;(2) S,=T =1, 对i=1~ n令T,=xT,,/i, S,=St-I +T,;(3) S=(1+}--11+2100101(4)A (Bα)习题21. L,(2.1)= 5.172.(1)线性插值-0.656683(2)抛物插值—0.653417,准确值—0.6539263.±0.9,0,2,1.04666...4. (1)(6x-5)x(x-2),(2) x(1-x)",(3) x2(1-x)/2.5(1) f[2°,2']=26, f[2°,2′,..,25]=1, [2,2′,.-,2]=0(2)[0,1]= 0, f[1,2,...,6] =1, [0,1,..,6]=057,39731.246. (1) N,(x)=x3+x2-x+2,N(x) =x+2.xx61211 511965+4(2) N,(x)=x +9x +9x+5,N.(x) =x+5/1261267.(1)差商表如下:f[x-,x,]if(x,)X00-7131-422593363262114N6539901551286312001(2) N,(x)=x +2x-7(3) x= 2.77821356348. (1)H,(0.27)=0.0728362(2)H(0.36)=0.1292552
2 (3)A,避免相近数相减; (4)C,避免小除数和相近数相减,且节省对数运算. 15.(1)A, (2)B. 16.(1) y x y y y y 5, 9 7 6 4 ; (2) 0 1 o S T ,对i n 1 ~ 令 1 1 / , T xT i S S T i i i i i ; (3) 1 1 1 1 / 2 2 100 101 S (4)A(B ) 习题 2 1. 2 L (2.1) 5.17 2.(1)线性插值 0.656683 (2)抛物插值-0.653417,准确值-0.653926 3. 0.9, 0, 2, 1.046 66. 4.(1) 2 2 (6 5) ( 2) x x x , (2) 3 x x (1 ) , (3) 2 x x (1 ) / 2 . 5(1) 0 1 0 1 5 0 1 6 f f f [2 , 2 ] 26, [2 , 2 , , 2 ] 1, [2 , 2 , , 2 ] 0 (2) f f f [0,1] 0, [1, 2, , 6] 1, [0,1, , 6] 0 6.(1) 3 2 3 N x x x x ( ) 2 , 4 N x( ) 2. 6 31 12 97 3 7 12 5 4 3 2 x x x x (2) 3 2 3 N x x x x ( ) 9 9 5 , 4 N x( ) 5. 6 65 12 119 6 5 12 11 4 3 2 x x x x 7.(1)差商表如下: i i x ( )i f x 1 [ , ] i i f x x . 0 0 -7 1 1 -4 3 2 2 5 9 3 3 3 26 21 6 1 4 4 65 39 9 1 0 5 5 128 63 12 1 0 0 (2) 3 3 N x x x ( ) 2 7 3 x 2.7782135634 8.(1) 3 H (0.27) 0.0728362 (2) 3 H (0.36) 0.129255
9. H,(x)=0.4-0.3x+0.2x,f(2.2)~0.70810. H,(x)=(x+1)(x-1)2, f(0.5) = H,(0.5)= 0.37511. P(x)=x(x2-3x+1.5)12. (1.075)~2.16, f(1.175) ~2.24513.15.83,0.002.14.(1)2.374626,0.217463;(2)1.195788,0.002467(3) 1.194 730.S.(x)=-104.850+292.125x-268.125x2+81.25x,xe[1.1,1.2]S,(x)=143.55-328.875x+249.375x2-62.5x3,xe[1.2,1.4]15. S(x)=3[S,(x)=-148.0+295.875x-196.875x +43.75x,xe[1.4,1.5]16.(1)M。=-2.0286,M,=-1.4627,M, =-1.0334, M,=-0.8058, M4 =-0.6546 (2)M,=-1.4686,M,=-1.0311,M,=-0.80821515274352717. (1)(M。M,M,M,M)21(1471481394824(2) (M。M,M, M,M) =1014147习题31. y=0.1-0.2x2.y=0.2+0.5x-0.1x23.=0.9726045+0.0500351x2,平方误差0.1302075264.y=1.41841-0.204962x30.2125.y=0.529-x6.y=2.973+0.531lnx7.二次最佳平方逼近多项式为P(x)=0.647919+0.528123x-0.031248(3x2-1)其平方误差为0.062495×0.037497~0.00129习题 4421. (1) A =A A :333
3 9. 2 2 H x x x f ( ) 0.4 0.3 0.2 , (2.2) 0.708 10. 2 3 3 H x x x f H ( ) ( 1)( 1) , (0.5) (0.5) 0.375 11. 2 2 4 P x x x x ( ) ( 3 1.5) 12. f f (1.075) 2.16, (1.175) 2.245 13.15.83, 0.002. 14.(1)2.374 626, 0.217 463; (2)1.195 788, 0.002 467; (3)1.194 730. 15. 2 3 0 2 3 1 2 3 2 ( ) 104.850 292.125 268.125 81.25 , [1.1,1.2] ( ) ( ) 143.55 328.875 249.375 62.5 , [1.2,1.4] ( ) 148.0 295.875 196.875 43.75 , [1.4,1.5] S x x x x x S x S x x x x x S x x x x x 16.(1) 0 1 M M 2.028 6, 1.462 7 , 2 3 4 M M M 1.033 4, 0.805 8, 0.654 6 ; (2) 1 2 3 M M M 1.468 6, 1.0311, 0.808 2 . 17.(1) 0 1 2 3 4 27 15 15 27 435 ( ) 14 7 2 7 14 T T M M M M M ; (2) 0 1 2 3 4 39 48 81 ( ) 0 24 14 7 14 T T M M M M M . 习题 3 1. y x 0.1 0.2 2. 2 y x x 0.2 0.5 0.1 3. 2 y x 0.9726045 0.0500351 ,平方误差 0.130207526 4. 3 y x 1.41841 0.204962 5. 0.212 y 0.529 x 6. y x 2.973 0.531ln 7.二次最佳平方逼近多项式为 2 P x x x ( ) 0.647919 0.528123 0.031248(3 1) 其平方误差为 0.062495 0.037497) 0.00129 习题 4 1.(1) 1 2 2 4 2 , 3 3 A A A ;
(2) A = A, =h/3, A, = 4h/3 ;'(x)d[45(a)+2(b)+(b-a)](a)(3)6(4) A. = A = h/2, B, =-B, = h2 /12 ,2 "()(0)+3(h)+3(2h)+(3)8f(x)dx~[7f(-1)+16 f(0)+7f(1)+ f'(-1)- ())469等份5.(1)1.369459,1.370763;(2)0.270769,0.272197;(3)0.822866,0.822469;(4)0.694122,0.693155.6.0.5735959,0.57737837.0.2218.(1)0.619017(2)0.7092759.(1)S(f)=0.236564(2)S(f)=0.820378(3)S(f)=0.0410119(4)S(f)=0.037862210.(1)1.369459,0.001304;(2)0.270769,0.001437;(3)0.822866,-0.000397;(4)0.694122,-0.00096711.(1)1.370761,(2)0.272197(3)0.822467,(4)0.693148h4TG43T4TCT(h)-T,(h)T,(h112.T(h)=, T,(h) =, T(h)=4-142-143-1(3)0.822467,(4)0.693146.13.(1)1.370762,(2)0.272203,x =-x =/5/3:14. (1) A, =2/3, xo=0;A =A =1/3280V2805_1A(2) A=2/3,x =0.6;: x49363300585代数精度5.15.a,a:,ay=9992f(x)dx=+ f(O)+6T3517.-0.8;0.3;0.2518.12.01;12.0001习题51.x=(-227.08,476.92,-177.69))4
4 (2) 0 2 1 A A h A h / 3, 4 / 3; (3) ( ) [4 ( ) 2 ( ) ( ) ( )] 6 b a b a f x dx f a f b b a f a (4) 2 0 1 0 1 A A h B B h / 2, /12 , 2 3 0 3 ( ) [ (0) 3 ( ) 3 (2 ) (3 )] 8 h h f x dx f f h f h f h 3 1 1 1 ( ) [7 ( 1) 16 (0) 7 (1) ( 1) (1)] 15 f x dx f f f f f 4 69 等份. 5.(1)1.369 459, 1.370 763; (2)0.270 769, 0.272 197; (3)0.822 866, 0.822 469; (4)0.694 122, 0.693 155. 6. 0.5735959, 0.5773783 7. 0.221 8 .(1)0.619017 (2)0.709275 9 .(1)S(f)=0.236564 (2)S(f)=0.820378 (3)S(f)=0.0410119 (4)S(f)=0.0378622 10.(1)1.369 459,0.001 304; (2)0.270 769,0.001 437; (3)0.822 866,-0.000 397; (4)0.694 122,-0.000 967. 11.(1)1.370 761,(2)0.272 197,(3)0.822 467,(4)0.693 148. 12. 1 4 ( ) ( ) 2 ( ) 4 1 h T T h T h , 2 1 1 2 2 4 ( ) ( ) 2 ( ) 4 1 h T T h T h , 3 2 2 3 3 4 ( ) ( ) 2 ( ) 4 1 h T T h T h 13.(1)1.370 762, (2)0.272 203, (3)0.822 467,(4)0.693 146. 14.(1) 0 0 A x 2 / 3, 0; 1 2 A A 1/ 3 2 1 x x 5/ 3 ; (2) 0 0 A x 2 / 3, 0.6;; 1,2 1,2 5 280 1 280 , 9 63 3 300 x A , 15. 1 2 3 5 8 5 , , 9 9 9 a a a .代数精度 5. 16 . 1 1 2 2 2 ( ) (0) 3 2 2 f x dx f f f 17. 0.8;0.3;-0.25 18. 12.01;12.0001 习题 5 1. ( 227.08, 476.92, 177.69)T x
2.x=(1.335.0,-5.003):x=(0.2252.0.2790.0.3295)3.x=(1.930,-0.68695,0.88888))230[223]1021312704. A=0-1 206-1455. x=(221007[111021006.A不能分解:B=-113为一任意常数,分解不唯一;[2 152-2O132[1 0012632001C=1/6311001/23%0(215%31417. A=-b-3 42Y0I1(6645211(71212328.A=2113-113(4(4311109,4,2)9.x=[0010n1021010010. A=2X=2,x=0,x=2[1 -21//00052111)11. x=(6'3'2'3'612.I AI=1.1,|lAl=0.8,Al=0.71 =0.84,IA/=/0.68534=0.8278513. (43),(+ + ) (8,6), / 10274.II x II习题61. x =(1,1,-1))5
5 2. (1.335,0, 5.003) ; T x T x (0.2252,0.2790,0.3295) 3. (1.930, 0.68695, 0.88888)T x 4. 1 2 3 1 0 0 2 2 3 2 7 7 2 1 0 0 3 1 1 4 5 1 2 1 0 0 6 A 5. 1 1 ( ,1, ) 2 2 T x 6.A 不能分解; 32 32 1 0 0 1 1 1 2 1 0 0 0 1 2 1 0 2 B l l , 32 l 为一任意常数,分解不唯一; 1 0 0 1 2 6 2 1 0 0 1 3 6 3 1 0 0 1 C 7. 1 2 1 1 3 1 3 1 1 2 3 2 1 0 1 6 6 4 5 2 3 4 4 3 2 A , 1 1 1 1 y 2 0 5 1 x , 8. 1 1 1 2 3 4 2 1 1 1 2 3 3 2 1 1 1 1 4 3 1 1 1 1 A , 1 2 3 4 x 9. 9 ( , 4, 2) 4 T x 10. 1 0 0 2 1 0 1 2 1 A 1 0 0 0 1 0 0 0 4 1 2 1 0 1 2 0 0 1 , 1 2 3 x x x 2, 0, 2 . 11. 5 2 1 1 1 ( , , , , ) 6 3 2 3 6 T x 12. || || 1.1,|| || 0.8,|| || 0.71 0.84, A A 1 A F || A||2 0.68534 0.82785 13. 10274. || || || || (4,3) ,( ) (8,6) , x x x x x T T 习题 6 1. * (1,1, 1)T x