2.相对收入假设消费函数模型 (①)“示范性”假设消费函数模型 Duesenberry认为,在一个群体收入分布中处于低 收入的个体,往往有较高的消费倾向。 C=+Y ·消费函数 C,=y+a%Z+4 i=1,2,.,n ·参数的经济意义和数值范围?
⒉ 相对收入假设消费函数模型 ⑴ “示范性”假设消费函数模型 ❖ Duesenberry认为,在一个群体收入分布中处于低 收入的个体,往往有较高的消费倾向。 C Y Y Y i i i i = 0 +1 Ci = 0 Yi +1 Yi + i i = 1,2, ,n • 消费函数 • 参数的经济意义和数值范围?
(2)“不可逆性”假设消费函数模型 ÷Duesenberry认为当前收入低于曾经达到的最高收 入时,往往有较高的消费倾向。 C, Y =a+1Y ·消费函数 C,=0Y,+aY+4 t=12,.,T C,=aY,+Y,-1+4
⑵ “不可逆性”假设消费函数模型 ❖ Duesenberry认为当前收入低于曾经达到的最高收 入时,往往有较高的消费倾向。 C Y Y Y t t t = 0 +1 0 Ct = 0 Yt +1 Y0 + t Ct = 0 Yt +1 Yt−1 + t t = 1,2, ,T • 消费函数
3.生命周期假设消费函数模型 Modigliani,.Brumberg和Ando于1954年提出预 算约束为 Y ·使得效用函数达到最大,消费是各个时期的收入 和贴现率的函数。即 C=C,(Y,Y,.,Y,r)
⒊ 生命周期假设消费函数模型 ❖ Modigliani,Brumberg和Ando于1954年提出预 算约束为 C r Y r t t t T t t t T (1 ) (1 ) 1 1 1 + 1 = + − = − = C c Y Y Y r t = t T ( , , , , ) 1 2 • 使得效用函数达到最大,消费是各个时期的收入 和贴现率的函数 。即