弯曲变形(Deflection of Beams)S6-2挠曲线的微分方程(Differentialequation ofthedeflection curve)一、推导公式(Derivationoftheformula)1.纯弯曲时曲率与弯矩的关系(Relationshipbetweenthecurvature of beam and the bending moment)MEIO横力弯曲时,M和p都是x的函数.略去剪力对梁的位移的影响,则M(x)EIpx)
(Deflection of Beams) §6-2 挠曲线的微分方程 ( Differential equation of the deflection curve) 一、推导公式(Derivation of the formula) 1.纯弯曲时曲率与弯矩的关系(Relationship between the curvature of beam and the bending moment) 1 M EI = 横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则 1 ( ) ( ) M x x EI =
弯曲变形(Deflectionof Beams2.由数学得到平面曲线的曲率(The curvaturefromthemathematics)p(x)(1+w2)M(x)十EI(1 +w2)
(Deflection of Beams) 2.由数学得到平面曲线的曲率 (The curvature from the mathematics) 3 2 2 1 | | ( ) (1 ) w x w = + 3 2 2 | | ( ) (1 ) w M x EI w = +
弯曲变形(Deflection of Beams在规定的坐标系中x轴水平向右wMM为正,w轴竖直向上为正0xM>0曲线向下凸时:W">0M>0w">0曲线向上凸时:w<0M<0wMM因此,w"与M的正负号相同x0M<0w"<0
(Deflection of Beams) 在规定的坐标系中,x 轴水平向右 为正, w轴竖直向上为正. 曲线向上凸时: O x w x O w w M 0 0 因此, w 与 M 的正负号相同 0 0 M w 曲线向下凸时: w M 0 0 0 0 M w M M M M
弯曲变形(Deflectionof BeamsM(x)w3EI(1 +w2)2w2与1相比十分微小而可以忽略不计,故上式可近似为M(x)(6.5)EI此式称为梁的挠曲线近似微分方程(differentialequationofthedeflectioncurve)(2)1略去了W2项;近似原因:(1)略去了剪力的影响;(3) 0~tan0=w=w'(x)
(Deflection of Beams) 此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) (6.5) 3 2 2 ( ) (1 ) w M x EI w = + ( ) " M x w EI = 近似原因 : (1) 略去了剪力的影响; (2) 略去了 项; (3) 2 w = = tan ( ) w w x w 2 与 1 相比十分微小而可以忽略不计,故上式可近似为
弯曲变形(Deflectionof Beams)S6-3用积分法求弯曲变形(Beamdeflectionbyintegration)一、微分方程的积分(Integrating thedifferential equation)M(x)WEI若为等截面直梁,其抗弯刚度E为一常量上式可改写成EIw" = M(x)
(Deflection of Beams) §6-3 用积分法求弯曲变形 (Beam deflection by integration ) 一、微分方程的积分 (Integrating the differential equation ) 若为等截面直梁, 其抗弯刚度EI为一常量上式可改写成 M x( ) w EI = EIw M x = ( )