具体分析一下R、L、C串联电路:Z-R+i(@L-1/oC)-IZ/Z @のL>1/@C,X>0,@>0,电路为感性,电压领先电流のL<1/@C,X<0,@<0,电路为容性,电压落后电流のL-1/のC,X-0,@=0,电路为电阻性,电压与电流同相V; = 0画相量图:选电流为参考向量(のL>1/C)三角形UR、Ux、U称为电压三角形,它和阻抗三角形相似。即UXCU=VUR+U?
具体分析一下R、L、C 串联电路: Z=R+j(L-1/C)=|Z|∠j L > 1/ C ,X>0, j >0,电路为感性,电压领先电流; L<1/ C ,X<0, j <0,电路为容性,电压落后电流; L=1/ C ,X=0, j =0,电路为电阻性,电压与电流同相。 画相量图:选电流为参考向量(L> 1/ C ) 三角形UR 、UX 、U 称为电压三 角形,它和阻抗三角形相似。即 UC I UR UL U j UX 2 2 U = UR + U X i = 0
例R.已知:R-152,L-0.3mH,C-0.2uFu=5/2sin(ot+60°),f =3×10*Hzuc天求i,ur,ur,uc解:UR+u+uc=u其相量模型为U=5Z60°VjwLRjoL=j2元×3×104×0.3×10-3=j56.52OU+2t ×3×10 ×0.2×10=-j26.52UPOUc子OCjacO1=15+j56.5-j26.5=33.54263.4°2Z=R+joLOC
例. L C R u uL uC i + - + - + - 已知:R=15, L=0.3mH, C=0.2F, 5 2 sin( 60 ), 3 10 Hz . 4 u = ωt + f = 求 i, uR , uL , uC . 解: . 其相量模型为 I R j L + - + - + - . U U L . U C . jωC 1 V = 560 • U C Z R L 1 = + j − j uR + uL + uC = u j j2 3 10 0.3 10 j56.5Ω 4 3 = = − L j Ω π j 1 j 26.5 2 3 10 0.2 10 1 4 6 = − − = − − C = 15 + j56.5 − j26.5 Ω o = 33.5463.4
5260°0.149Z-3.4%A33.5463.4U R =RI =15×0.149Z -3.4° = 2.235Z-3.4°VU 1= joLI=56.5Z90°×0.149Z-3.4°-8.42Z86.4°VUc=i!1=26.5-90°×0.149/-3.4°=3.95-93.4VOCU则 i=0.149/2 sin(@t-3.4°) AuR=2.235/2sinat-3.4°)Vu,= 8.42V2 sin(@ t +86.6) V-3.4°Du。=3.95/2sin(wt-93.4°)VURU-8.42>U=5,分电压大于总电压相量图
A o o o 0.149 3.4 33.54 63.4 5 60 = − = = • • Z U I 则 i = 0.149 2 sin(ωt − 3.4 o ) A UL=8.42>U=5,分电压大于总电压。 U UL UC I R U j -3.4° 相量图 V o o = = 150.149− 3.4 = 2.235− 3.4 • • U R R I j V o o o = = 56.590 0.149− 3.4 = 8.4286.4 • • U L L I V C 1 j o o o = = 26.5− 90 0.149− 3.4 = 3.95− 93.4 • • UC I V o u = 2.235 2 sin(ω t − 3.4 ) R V o u = 8.42 2 sin(ω t + 86.6 ) L V o u = 3.95 2 sin(ω t −93.4 ) C
4.RLC并联电路0ioC由KCL:1-IR+It+Ic-GU-U+jocUOL=(G-+joC)uOL-IG+ j(B,+ B)U= (G+ jB)U
4. RLC并联电路 由KCL: I I R I L I C . . . . = + + i u R L C iL iC + - iL . I j L . U I L . IC . jωC 1 R + - IR . . j . j . U C U L GU = − + 1 . j j C U L G ) 1 ( = − + . = [G + j(BL + BC )U . = (G + jB)U
11-1-om-n2oY复导纳:G电导(导纳的实部):B电纳(导纳的虚部):Y一复导纳的模:?一导纳角关系:+ B?IY=VG?G-YIcoso或B-GB-YIsin @p'=arctgYBM-uDLP'=Vi-V导纳三角形
i u u i ψ ψ U I U ψ I U I Y = − = = . . Y— 复导纳;G—电导(导纳的实部);B—电纳(导纳的虚部); |Y|—复导纳的模;j '—导纳角。 关系: ' arctg | | 2 2 = = + G B φ Y G B 或 G=|Y|cosj ' B=|Y|sinj ' |Y| G B j i u 导纳三角形 U I Y j = − = = G + jB =|Y | φ