《线性代数A1》教学大纲 (2013版) 课程编码:1510309203 课程名称:线性代数A1 学时/学分:48/3 先修课程:《初等数学》、《高等数学》 适用专业:化学工程与工艺、制药工程等专业 开课教研室:大学数学教研室 执笔:蒋菊霞 审定:王仁举 赵国喜
《线性代数 A1》教学大纲 (2013 版) 课程编码:1510309203 课程名称:线性代数 A1 学时/学分:48/3 先修课程:《初等数学》、《高等数学》 适用专业:化学工程与工艺、制药工程等专业 开课教研室:大学数学教研室 执笔:蒋菊霞 审定:王仁举 赵国喜
《线性代数A1》教学大纲 (2013版) 课程编码:1510309203 课程名称:线性代数A1 学时/学分:48/3 先修课程:《初等数学》、《高等数学》 适用专业:化学工程与工艺、制药工程等专业 开课教研室:大学数学教研室 执笔: 审定:
《线性代数 A1》教学大纲 (2013 版) 课程编码:1510309203 课程名称:线性代数 A1 学时/学分:48/3 先修课程:《初等数学》、《高等数学》 适用专业:化学工程与工艺、制药工程等专业 开课教研室:大学数学教研室 执笔: 审定:
一、课程性质与任务 1.课程性质:本课程是化学工程与工艺、制药工程等专业的专业基础课。 2.课程任务:通过本课程的学习,应使学生理解和初步掌据行列式,矩阵及其运算,向量 的线性相关性,矩阵的初等变换与线性方程组,相似矩阵及二次型。在教学过程中注重培养学生 逻辑思维和抽象思维能力,提高学生分析问题和解决实际问题的能力,为学生学习后续课程打下 必要的数学基础。 二、课程教学基本要求 1.正确理解下列基本概念:n阶行列式、矩阵、逆矩阵、矩阵的秩、n维向量、线性相关、 线性无关、矩阵的特征值和特征向量等。 2.正确掌握下列方法:阶行列式的计算、初等变换求矩阵的逆和秩、齐次线性方程组和非 齐次线性方程组的求解、特征值和特征向量的计算方法等。 成绩考核形式:平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)+期末成绩(闭 卷考试)(70%),成绩评定采用百分制,60分为及格。 三、课程教学内容 第一章行列式 1.教学基本要求 让学生了解行列式的定义:引导学生利用行列式解决简单实际问题:激发学生对本课程学习 的兴趣。 2.要求学生掌握的基本概念、理论、技能 通过本章教学使学生了解阶行列式的定义,掌握行列式的性质:会应用行列式的性质和行 列式按行(列)展开的定理计算行列式:了解克拉默(Gramer)法则,会用克拉默法则求解线性方程 组。 3.教学重点和难点 教学重点是行列式的性质及行列式按行(列展开定理。教学难点是行列式的定义,行列式的 性质及行列式按行(列)展开定理,特殊阶行列式的计算。 4.教学内容 第一节 二阶与三阶行列式 1.二元线性方程组与二阶行列式 2.三阶行列式 第二节全排列及其逆序数 1.全排列定义 2逆序数定义
一、课程性质与任务 1.课程性质:本课程是化学工程与工艺、制药工程等专业的专业基础课。 2.课程任务:通过本课程的学习,应使学生理解和初步掌握行列式,矩阵及其运算,向量 的线性相关性,矩阵的初等变换与线性方程组,相似矩阵及二次型。在教学过程中注重培养学生 逻辑思维和抽象思维能力,提高学生分析问题和解决实际问题的能力,为学生学习后续课程打下 必要的数学基础。 二、课程教学基本要求 1.正确理解下列基本概念:n 阶行列式、矩阵、逆矩阵、矩阵的秩、n 维向量、线性相关、 线性无关、矩阵的特征值和特征向量等。 2.正确掌握下列方法:n 阶行列式的计算、初等变换求矩阵的逆和秩、齐次线性方程组和非 齐次线性方程组的求解、特征值和特征向量的计算方法等。 成绩考核形式:平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)+期末成绩(闭 卷考试)(70%),成绩评定采用百分制,60 分为及格。 三、课程教学内容 第一章 行列式 1.教学基本要求 让学生了解行列式的定义;引导学生利用行列式解决简单实际问题;激发学生对本课程学习 的兴趣。 2.要求学生掌握的基本概念、理论、技能 通过本章教学使学生了解 n 阶行列式的定义,掌握行列式的性质;会应用行列式的性质和行 列式按行(列)展开的定理计算行列式;了解克拉默(Gramer)法则,会用克拉默法则求解线性方程 组。 3.教学重点和难点 教学重点是行列式的性质及行列式按行(列)展开定理。教学难点是行列式的定义,行列式的 性质及行列式按行(列)展开定理,特殊 n 阶行列式的计算。 4.教学内容 第一节 二阶与三阶行列式 1.二元线性方程组与二阶行列式 2.三阶行列式 第二节 全排列及其逆序数 1.全排列定义. 2.逆序数定义
3逆序数计算方法 第三节n阶行列式的定义 1.三阶行列式的结构. 2.n阶行列式的定义及一般项的特点 3.一些特殊的n阶行列式 第四节对换 1对换的定义 2.有关定理及推论 第五节行列式的性质 1转置行列式 2.行列式性质及推论 3.例题 第六节行列式按行(列)展开 1.余子式及代数余子式的定义 2.行列式按行列展开的有关定理及推论 3.例题 第七节克拉默法则 1克拉姆法则 2.例题 3.相关定理及推论 第二章 矩阵及其运算 1.教学基本要求 让学生理解矩阵的概念,掌握矩阵的运算,了解分块矩阵的运算 2.要求学生掌握的基本概念、理论、技能 通过本章教学,使学生理解矩阵的概念,掌握矩阵的线性运算、矩阵乘法运算、矩阵转置运 算、方阵的行列式以及它们的运算律:理解逆矩阵的概念,掌握逆矩阵的性质以及方阵可逆的充 分必要条件:理解伴随矩阵的概念,会用伴随矩阵求可逆矩阵的逆矩阵:了解分块矩阵的概念及 分块矩阵的运算。 3.教学重点和难点 教学重点是矩阵的概念,矩阵的运算,逆矩阵的概念、性质及其计算。教学难点是矩阵的乘
3.逆序数计算方法 第三节 n 阶行列式的定义 1.三阶行列式的结构. 2.n 阶行列式的定义及一般项的特点 3.一些特殊的 n 阶行列式 第四节 对换 1.对换的定义 2.有关定理及推论 第五节 行列式的性质 1.转置行列式 2.行列式性质及推论 3.例题 第六节 行列式按行(列)展开 1.余子式及代数余子式的定义 2.行列式按行列展开的有关定理及推论 3.例题 第七节 克拉默法则 1.克拉姆法则. 2.例题 3.相关定理及推论 第二章 矩阵及其运算 1.教学基本要求 让学生理解矩阵的概念,掌握矩阵的运算,了解分块矩阵的运算。 2.要求学生掌握的基本概念、理论、技能 通过本章教学,使学生理解矩阵的概念,掌握矩阵的线性运算、矩阵乘法运算、矩阵转置运 算、方阵的行列式以及它们的运算律;理解逆矩阵的概念,掌握逆矩阵的性质以及方阵可逆的充 分必要条件;理解伴随矩阵的概念,会用伴随矩阵求可逆矩阵的逆矩阵;了解分块矩阵的概念及 分块矩阵的运算。 3.教学重点和难点 教学重点是矩阵的概念,矩阵的运算,逆矩阵的概念、性质及其计算。教学难点是矩阵的乘
法运算,逆矩阵的运算。 4.教学内容 第一节矩阵 1.矩阵的定义 2.单位矩阵、对角矩阵、对称矩阵等特殊的矩阵 3.线性变换与矩阵的关系 第二节矩阵的运算 1矩阵的加法、数乘、乘法、转置、方阵的行列式、共轭矩阵等概念 2.相应的运算规律 第三节逆矩阵 1逆矩阵的概念及性质 2.用伴随矩阵求逆矩阵 3.利用逆矩阵解简单的矩阵方程 第四节矩阵分块法 1分块矩阵及其运算 2.分块矩阵的作用 3.用分块矩阵讨论简单的线性代数问题 第三章矩阵的初等变换与线性方程组 1.教学基本要求 让学生掌握矩阵的秩的概念:掌握用初等变换求矩阵的秩和矩阵的逆矩阵的方法:掌握用初 等变换解线性方程组的方法。 2.要求学生学握的基本概念、理论、技能 通过本章教学,使学生掌握矩阵的初等变换,知道初等矩阵的概念:了解初等矩阵的性质和 矩阵等价的概念,理解矩阵的秩的概念掌握用初等变换求矩阵的秩和矩阵的逆矩阵的方法;掌 握用初等变换解线性方程组的方法。 3.教学重点和难点 教学重点是矩阵的初等变换,矩阵的秩的概念。教学难点是矩阵的初等变换,矩阵的秩。 4.教学内容 第一节矩阵的初等变换 1.用消元法解线性方程组
法运算,逆矩阵的运算。 4.教学内容 第一节 矩阵 1.矩阵的定义 2.单位矩阵、对角矩阵、对称矩阵等特殊的矩阵 3.线性变换与矩阵的关系 第二节 矩阵的运算 1.矩阵的加法、数乘、乘法、转置、方阵的行列式、共轭矩阵等概念 2.相应的运算规律 第三节 逆矩阵 1.逆矩阵的概念及性质. 2.用伴随矩阵求逆矩阵 3.利用逆矩阵解简单的矩阵方程 第四节 矩阵分块法 1.分块矩阵及其运算 2.分块矩阵的作用 3.用分块矩阵讨论简单的线性代数问题 第三章 矩阵的初等变换与线性方程组 1.教学基本要求 让学生掌握矩阵的秩的概念;掌握用初等变换求矩阵的秩和矩阵的逆矩阵的方法;掌握用初 等变换解线性方程组的方法。 2.要求学生掌握的基本概念、理论、技能 通过本章教学,使学生掌握矩阵的初等变换,知道初等矩阵的概念;了解初等矩阵的性质和 矩阵等价的概念,理解矩阵的秩的概念;掌握用初等变换求矩阵的秩和矩阵的逆矩阵的方法;掌 握用初等变换解线性方程组的方法。 3.教学重点和难点 教学重点是矩阵的初等变换,矩阵的秩的概念。教学难点是矩阵的初等变换,矩阵的秩。 4.教学内容 第一节 矩阵的初等变换 1.用消元法解线性方程组