一维卷积神经网络特征提取下微震能级时序预测

微震能级随时间发生变化,高能级微震事件与冲击地压有良好的对应关系,为预测矿山微震能量时序变化,基于一维卷积神经网络(Convolutional neural networks,CNN),建立微震能级时间序列预测模型;通过模型训练,实现以前十次微震事件的能量级别作为输入来预测下一次微震事件的能量级别。由于微震样本数据类间不平衡问题,导致模型测试时将106能量级别的微震事件全部判断为105能量级别的微震事件,为进一步提高模型对106能级微震事件预测的准确率,对模型进行改进并使用混合采样方法训练改进后的模型;利用砚北煤矿250202工作面微震能级实测部分数据,改进后模型的总体测试正确率达到98.4%,其中106能量级别的微震事件测试正确率提升到99%。将模型应用于砚北煤矿250202工作面进行微震能级时序预测,模型的预测正确率整体达到93.5%,且对高能级微震事件的预测正确率接近100%。
文件格式:PDF,文件大小:919.45KB,售价:2.88元
文档详细内容(约8页)
点击进入文档下载页(PDF格式)
共8页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录