2.微分性质①时域导数性质J udv= uv-fvdu若:[f(t)]=F(S)df(t)则出=sF(s)- f(0.)dtdf(t)df(t)证:=dt =( e-sdf(t)dtdtX-1f(t)f(t)(-s)dt=eE0=-f(0)+sF(S)爱国爱校西安交通大学XrinJaoton求真理nvwy
2. 微分性质 ①时域导数性质 − − − − − − = 0 s t s t e f t s d t 0 e f (t) ( )( ) = − f (0 ) + sF(s) − udv = uv − vdu s s ( ) = − − F( ) f 0 d t d f (t ) 则 若: f (t)= F(S) − − − = − 0 s t s t 0 e dt e df (t ) dt df (t ) = dt df (t ) 证:
求:f(t)=cos(のt)的象函数例1dsin(ot)1 dsin(ot)解 acos(ot)= cos(ot)-dtdtLL[cosot]=(sin(ot)odt0Q爱国爱校西安交通大学XrnJicotong求真理tnvewity
0 2 2 − + = s s 2 2 + = s s 例 1 求: f ( t ) = cos( t )的象函数 解 = (sin( ) 1 [cos ] ω t d t d ω ω t d t d ωt ω ω ωt ωt d t d ωt 1 sin( ) cos( ) cos( ) sin( ) = =
求:f(t)=(t)的象函数例2d:(t)L[e(t)] =解8(t) :dt出[(t)]-L[片S=:(t)lSdt推广:ft:4=s[sF(s)- f(0-)]- f(0-)dt?= S’F(S)-Sf(0-)- f (0-)d"f(t)CLrI= S"F(S)- Sn- f(0-)-...- fn-'(0-)dtn爱国爱校Xnhaotongy西安交通大学求真理tnveuwity
推广: ( ) (0 ) (0 ) 2 − ' − = S F S − Sf − f 例2 求: f (t) = δ( t)的象函数 解 dt dε t δ t ( ) ( ) = s 1 [ε(t)] = ] ( ) [ n n dt d f t ( ) (0 ) (0 ) −1 − −1 − = − − − n n n S F S S f f ] ( ) [ 2 2 dt d f t s[s (s) (0 )] (0 ) − ' − = F − f − f [ ε(t)] dt d = 1 1 = = S δ(t) S
②频域导数性质dF(s)则:设: [f(t)]=F(s)L[-tf(t)] =ds8证:f(t)(-t)e-s dtf(t)e-st dt-J0-ds [-tf(t)]例1求: f(t)=te(t)的象函数出[te(t)] =-些) =()解爱国爱校西安交通大学XrinJaotong求真理nvwy
②频域导数性质 − − 0 f (t)e dt ds 证:d st − = − − 0 f (t)( t)e dt st ) 1 ( ds S d = − ) 1 ( 2 S [tε(t)] = 设: [ f (t)] = F(s) = [−tf (t)] s (s) [ ( )] d dF 则: −tf t = 例1 求: f (t) = tε( t)的象函数 解
例2求:f(t)=t"c(t)的象函数07解± [t"ε(t)] =(-1)"Sdsn+1求:f(t)=te-"的象函数例3解[te-at ] =-"(s+a)dss+a爱国爱校西安交通大学XranJicotongy求真理nvwy
) s ! ( + 1 = nn [ t ε ( t)] n ( 1 ) ( s ) nn n dsd = − ) 1 ( ds s α d + = − 2 ( ) 1 s + α [ ] = α t te − 例 2 解 求: f ( t ) = t n ε ( t )的象函数 例 3 求: f ( t ) = te −at的象函数 解