应力应交状态分析(Analysis of stress-state and strain-state)3.主应力-主应变的关系(Principalstress-principalstrainrelation)已知Q1,2,03;81,82,8g为主应变[01 (2 +03)]F[02 -μ(03 +)]E1[03-(0+02]]E二向应力状态下(inplanestress-state)设3=0(01 - μo2) 82 =(02 -μo)) 83 = "(02 + 0)H
(Analysis of stress-state and strain-state) 3.主应力-主应变的关系(Principal stress-principal strain relation) [ ( )] 1 1 σ1 μ σ2 σ3 E ε = − + [ ( )] 1 2 σ2 μ σ3 σ1 E ε = − + [ ( )] 1 3 σ3 μ σ1 σ2 E ε = − + 二向应力状态下(in plane stress-state)设 3 = 0 ( ) 1 1 σ1 μσ2 E ε = − ( ) 1 2 σ2 μσ1 E ε = − ( ) 3 σ2 σ1 E μ ε + − = 已知 1,2,3 ; 1,2,3为主应变
应力应交状态分折(Analysis of stress-state and strain-state)二、各向同性材料的体积应变(Thevolumetric strainfor isotropic materials)每单位体积材料的体积变化,称为体积应变,用9表示各向同性材料在三向应力状态下的体应变92图示单元体,变形前三个边的边长分别为dx,dy,dz线应变分别为8,&2,83。体积为V=dxdydzaidy变形后的边长分别为dzdx(1+ 81), dy(1+82), dz(1+8)03dx变形后单元体的体积为V=dx(1+8):dy(1+82):dz(1+8)
(Analysis of stress-state and strain-state) 二、各向同性材料的体积应变(The volumetric strain for isotropic materials) 1 2 3 dx dy dz 每单位体积材料的体积变化, 称为体积应变, 用q 表示. 各向同性材料在三向应力状态下的体应变 图示单元体, 变形前三个边的边长分别为 dx , dy , dz. 线应变分别为 , 2 , 3 . 体积为 变形后的边长分别为 变形后单元体的体积为 dx(1+ ), dy(1+ 2 ) , dz(1+ 3 ) V1 = dx(1+ )·dy(1+ 2 ) ·dz(1+ 3 ) V = dx dy dz
应力应交状态分析(Analysis of stress-state and strain-state体积应变(volumetricstrain)为Vi-VAVdx(1 + )dy(1 + 8,)dz(1+8) - dxdydzdxdydzdxdydz(1+8,+8, +8)-dxdydz一dxdydz二[1-μ(02 +03)]1=81+&2+83[02 - μ(03 +0))用应力表示体积应变E-01+0,+03)[03-0+02)83EH
(Analysis of stress-state and strain-state) 体积应变(volumetric strain)为 = V -V 1 θ V = ( ) 1 2 3 1 - 2μ θ σ + σ + σ E [ ( )] 1 1 σ1 μ σ2 σ3 E ε = − + [ ( )] 1 2 σ2 μ σ3 σ1 E ε = − + [ ( )] 1 3 σ3 μ σ1 σ2 E ε = − + ( ) ( ) ( ) ( ) 1 2 3 1 2 3 1 2 3 dx 1+ ε dy 1+ ε dz 1+ ε - dxdydz = dxdydz dxdydz 1+ ε + ε + ε - dxdydz dxdydz = ε + ε + ε 用应力表示体积应变
应力应交状态分析(Analysis of stress-stateand strain-state)1.纯剪切应力状态下的体积应变(Volumetricstrainforpureshearing stress-state)=00=0少V01 =-03 = Txy即在小变形下,切应力不引起各向同性材料的体积改变2.三向等值应力单元体的体积应变(Thevolumetric strain oftriaxial-equalstresselementbody)0m01+02+03Cm=S三个主应力为3单元体的体积应变Om2L+om+omREOm1-2μ30mE
(Analysis of stress-state and strain-state) 1.纯剪切应力状态下的体积应变(Volumetric strain for pure shearing stress-state) 即在小变形下,切应力不引起各向同性材料的体积改变. xy σ = −σ = τ 1 3 0 σ2 = q = 0 2.三向等值应力单元体的体积应变(The volumetric strain of triaxial-equal stress element body) 三个主应力为 3 1 2 3 m σ σ σ σ + + = 单元体的体积应变 m m m m 3 1 2 ( ) 1 2 q − = + + − = E σ σ σ E m m m