E=lim 1. Electric field intensity(电场强度)? 2 the two fundamental postulates(散度和旋度)? E VⅹE=0 3. Gauss'saw高斯定理)? Gauss's law asserts that the total outward flux of the electric field intensity over any closed surface in free space is equal to the total charge enclosed in the surface divided by ag E·ds O 环路定理 the scalar line integral of the static electric filed intensity around any closed path vanishes. E·a=0 5. the electric field intensity of a positive point charge at or not at the origin 92(R-Rk) E=9(R-R) 47E0kR-R′ 47E。R-R R R 4e JsR=_I 4 E R
29 1. Electric field intensity(电场强度) ? 3. Gauss’s law(高斯定理)? 4.环路定理 the scalar line integral of the static electric filed intensity around any closed path vanishes. 5. the electric field intensity of a positive point charge at or not at the origin? 2. the two fundamental postulates(散度和旋度)? Gauss’s law asserts that the total outward flux of the electric field intensity over any closed surface in free space is equal to the total charge enclosed in the surface divided by 0 . ( ) 0 lim V/m q F E → q = = E 0 0 E = 0 E s S Q d = E 0 C = d l
Electric field due to a point charge点电荷的场 R-R P 4ICoR-R R-R →→E, gR-R) P (V/m 4ISR-R (b) Point charge not at the origin E Q1 R-R 4TEORIR-R PI E E 4丌 R dE ds 4TS JsR dE 30
30 Electric field due to a point charge 点电荷的场 2 0 3 0 R R E , ˆ ˆ 4 R R R R (R R ) E (V/m) 4 R R P qP qP P q - a a - - q - - = = = Q1 Q2 Q3 Q4 P E3 E4 E2 E1 l dl P P P dE s ds dE V dV dE
高斯定理的应用举例( Examples of the application of the Gauss theorem 条件:电荷分布具有较高的空间对称性 1.均匀带电球面的电场 2.均匀带电球体的电场 3.均匀带电无限大平面的电场 4均匀带电无限长直线的电场 5均匀带电无限长圆柱面的电场 6.均匀带电球体空腔部分的电场 31
31 高斯定理的应用举例 (Examples of the application of the Gauss theorem) 1. 均匀带电球面的电场 2. 均匀带电球体的电场 3. 均匀带电无限大平面的电场 5.均匀带电无限长圆柱面的电场 条件: 电荷分布具有较高的空间对称性 6. 均匀带电球体空腔部分的电场 4.均匀带电无限长直线的电场
32
32
步骤: 1进行对称性分析,即由电荷分布的对称性,分析场强分 布的对称性,判断能否用高斯定理来求电场强度的分布 常见的对称性有球对称性、轴对称性、面对称性等) 2根据场强分布的特点,作适当的高斯面,要求: ①待求场强的场点应在此高斯面上 ②穿过该高斯面的电通量容易计算 一般地,高斯面各面元的法线矢量n与E平行或垂直,n与E平行 时,E的大小要求处处相等,使得E能提到积分号外面; 3计算电通量和高斯面内所包围的电荷的代数和,最后由高 斯定理求出场强。 33
33 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分 布的对称性,判断能否用高斯定理来求电场强度的分布 (常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求: ①待求场强的场点应在此高斯面上, ②穿过该高斯面的电通量容易计算。 一般地,高斯面各面元的法线矢量n与E平行或垂直,n与E平行 时,E的大小要求处处相等,使得E能提到积分号外面; 3.计算电通量和高斯面内所包围的电荷的代数和,最后由高 斯定理求出场强