lutions in Vicinit u1(x)=(2-30)∑c(2-2x0) k=-0 2(2)=g()hn(z-30)+(x-20)∑dk(z-20) k=0 尜
Solutions in Vicinity of Regular Singularity Outlines & Conclusions) Example: Bessel Equation Solutions in Vicinity of Singularity Regular Singularity w1(z) = (z−z0) ρ1 P ∞ k=−0 ck(z−z0) k w2(z) = gw1(z) ln(z−z0)+(z−z0) ρ2 P ∞ k=0 dk(z−z0) k E|^4í'X=¦XêÊHLª ¢3½XêUkü ù«/ª)¡K) g = 0§w2(z)Lª¥Ø¹éê§ü )/ªÓ g 6= 0§w2(z)/ªÚw1(z)ØÓ(¹ké ê)§Ï I©O¦) C. S. Wu 1ù ~©§?ê){()
lutions in Vicinit u1(x)=(2-30)∑c(2-2x0) k=-0 2(2)=g()hn(z-30)+(x-20)∑dk(z-20) k=0 ρ反复利用递推关系即可求得系数普遍表达式 遗留的待定系数只能有两个
Solutions in Vicinity of Regular Singularity Outlines & Conclusions) Example: Bessel Equation Solutions in Vicinity of Singularity Regular Singularity w1(z) = (z−z0) ρ1 P ∞ k=−0 ck(z−z0) k w2(z) = gw1(z) ln(z−z0)+(z−z0) ρ2 P ∞ k=0 dk(z−z0) k E|^4í'X=¦XêÊHLª ¢3½XêUkü ù«/ª)¡K) g = 0§w2(z)Lª¥Ø¹éê§ü )/ªÓ g 6= 0§w2(z)/ªÚw1(z)ØÓ(¹ké ê)§Ï I©O¦) C. S. Wu 1ù ~©§?ê){()
lutions in Vicinit u1(x)=(2-30)∑c(2-2x0) k=-0 2(2)=g1(z)n(z-20)+(2-20)2∑dk(2-20) k=0 反复利用递推关系即可求得系数普遍表达式 遗留的待定系数只能有两个 这种形式的解称为正则 个解的形式相
Solutions in Vicinity of Regular Singularity Outlines & Conclusions) Example: Bessel Equation Solutions in Vicinity of Singularity Regular Singularity w1(z) = (z−z0) ρ1 P ∞ k=−0 ck(z−z0) k w2(z) = gw1(z) ln(z−z0)+(z−z0) ρ2 P ∞ k=0 dk(z−z0) k E|^4í'X=¦XêÊHLª ¢3½XêUkü ù«/ª)¡K) g = 0§w2(z)Lª¥Ø¹éê§ü )/ªÓ g 6= 0§w2(z)/ªÚw1(z)ØÓ(¹ké ê)§Ï I©O¦) C. S. Wu 1ù ~©§?ê){()
lutions in Vicinit u1(x)=(2-30)∑c(2-2x0) k=-0 2(2)=g1(z)n(z-20)+(2-20)2∑dk(2-20) k=0 反复利用递推关系即可求得系数普遍表达式 遗留的待定系数只能有两个 这种形式的解称为正则解 当9=0时,2(2)的表达式中不含对数项,两 个解的形式相同 不同含有(类 项),因而需分别
Solutions in Vicinity of Regular Singularity Outlines & Conclusions) Example: Bessel Equation Solutions in Vicinity of Singularity Regular Singularity w1(z) = (z−z0) ρ1 P ∞ k=−0 ck(z−z0) k w2(z) = gw1(z) ln(z−z0)+(z−z0) ρ2 P ∞ k=0 dk(z−z0) k E|^4í'X=¦XêÊHLª ¢3½XêUkü ù«/ª)¡K) g = 0§w2(z)Lª¥Ø¹éê§ü )/ªÓ g 6= 0§w2(z)/ªÚw1(z)ØÓ(¹ké ê)§Ï I©O¦) C. S. Wu 1ù ~©§?ê){()
lutions in Vicinit u1(x)=(2-30)∑c(2-2x0) k=-0 2(2)=g1(z)n(z-20)+(2-20)2∑dk(2-20) k=0 反复利用递推关系即可求得系数普遍表达式 遗留的待定系数只能有两个 这种形式的解称为正则解 当g=0时,2(2)的表达式中不含对数项,两 个解的形式相同 当0≠0时,()的形式和()不同(含有对( 数项),因而需分别求解
Solutions in Vicinity of Regular Singularity Outlines & Conclusions) Example: Bessel Equation Solutions in Vicinity of Singularity Regular Singularity w1(z) = (z−z0) ρ1 P ∞ k=−0 ck(z−z0) k w2(z) = gw1(z) ln(z−z0)+(z−z0) ρ2 P ∞ k=0 dk(z−z0) k E|^4í'X=¦XêÊHLª ¢3½XêUkü ù«/ª)¡K) g = 0§w2(z)Lª¥Ø¹éê§ü )/ªÓ g 6= 0§w2(z)/ªÚw1(z)ØÓ(¹ké ê)§Ï I©O¦) C. S. Wu 1ù ~©§?ê){()