Definition3.2.5(互相关与互协方差矩阵).设{a(t),tET)和(y(t),tET)是两个随机过程,对任意的两个时刻t1,t2,称(3.48)Rxy(ti,t2)=E[α(ti)l[y(t2)]为随机过程a(t),tET)与(y(t),tET)的互相关函数矩阵.称(3.49)Cxy(ti,t2) = E[α(ti)-mx(ti)][Y(t2)-my(t2)]7为随机过程(a(t),tET)与(y(t),teT)的互协方差函数矩阵Xran Jiaotong UniversityPROFESSORCAYUANLI6
Xi'an Jiaotong University PROFESSOR CAIYUANLI 6
Definition3.2.6(随机过程之间的相关性)对任意的t,TET,若E[c(t)yT(T)) = Ea(t)EyT(T)(3.50)或等价地Cxy(t,T)=O,则称随机过程[a(t),tET)和(y(t),tET)不相关若Rxy(t,T)=O,则称a(t),tET与(y(t),tET正交Definition3.2.7(随机过程之间的独立性).对任意的t,TET,若(3.51)Fxy[c(t),y(T)] =Fx[a(t)]Fy[y(T)]或者fxy[c(t),y(-)] =fx[a(t)]fy[y(-)],则称随机过程a(t),tET)与(y(t),tET)相互独立,其中Fxy)和fxY()分别为联合分布函数及联合概率密度函数,Fx,Fy)和fx,fy分别为对应的边缘分布函数及边缘概率密度Xran Jiaotong UniversityPROFESSORCAIYUANLI
Xi'an Jiaotong University PROFESSOR CAIYUANLI 7
平稳性与遍历性Definition3.2.8(严平稳随机过程).设{a(t),tET)是一个随机过程,若对任意正整数m,任意ti,t2,.,tmET及使ti+T,t2+T,,tm+TET的T,随机向量族a(ti),a(t2),.,a(tm)的联合分布函数与a(ti十T),a(t2+T),,a(tm十T)的联合分布函数满足(3.52)F(c1,a2,**,am;ti,t2,..,tm)=F(a1,2,.*,am;ti+T,t2+T,.**,tm+T)则称(t),tET是严格平稳随机过程,简称严平稳随机过程Definition3.2.9(二阶矩过程).设a(t),tET)是一个随机过程,若Ea(t)/2≤+oo,则称【a(t),tET)是二阶矩随机过程PROFESSORCAYUANLIXran JiaotongUniversity
平稳性与遍历性 Xi'an Jiaotong University PROFESSOR CAIYUANLI 8
Definition3.2.10(宽平稳随机过程).设【ac(t),tET是一个二阶矩随机过程,若(1)Ea(t)=a(t)=mx(不随时间变化);(2) Ea(t)αT(t + T) = Rx(T), Vt E T, T ≥ 0.则称【a(t),tET是宽平稳随机过程,简称平稳随机过程对宽平稳随机过程,显然有Rx() = Ec(t)aT(t)Rx(-T) = Rx(T)对应标量随机过程(a(t),tET,则有Rx()/≤RxO)Xian JiaotongUniversityPROFESSORCAIYUANLI
Xi'an Jiaotong University PROFESSOR CAIYUANLI 9
Definition3.2.11(谱密度).设Rx(T)是平稳随机过程c(t)的相关函数,那么+8Rx(T)e-jwTdTΦx(w) =8称为随机过程(t)的谱密度上述谱密度在文献中也称为功率谱、功率密度谱、功率谱密度或功率密度X1px (w)ejwTdwRx(T)三2元X合称为维纳-辛钦(Wiener一Khintchine)公式10PROFESSORCAYUANLIranJiaotongUniversity
Xi'an Jiaotong University PROFESSOR CAIYUANLI 10