江科技大学jiangsu university of sclence and technology(2)列出力法方程14+4p=0(3)求系数和自由项g=20kN/m160X-1BBoLAM图(单位kN·m)M图(单位m)M.M6mx8m×6m×6m×6m6mEIEIEI288m3576m3144m3EI,EI,EI,M.M15120kN.m22x8mx160kN.mx6mEIEL3ESchool of Civil Engineering and Architecture
School of Civil Engine School of Civil Engineering and Architecture ring and Architecture (2)列出力法方程 11X1+1P=0 (3)求系数和自由项 1 ds 6m m m + 6m m m 2 288m 144m 576m = 1 1 11 1 2 33 3 12 1 1 22 86 6 6 3 M M EI EI EI EI EI EI P P 5120kN.m ds m kN.m m = - 2 1 1 1 1 1 2 8 160 6 3 M M EI EI EI
江药科技大学chnology(4)求多余约策力2)作剪力图576m35120kN.m2以杆件为隔离体,利用已知的=0YEI,EI,杆端弯矩,由平衡条件求出杆80端剪力。KNX.920kN/m53.3353.33TRTRERTTEY(5)作内力图CD8m1)作弯矩图FQCDFQDCM=M-X+M,8053.3353.33D 8.9+167CDDO80三④106.7CBBF。图(单位kN)M图(单位kN·m)School ot Civil Engineering ang Architecture
School of Civil Engine School of Civil Engineering and Architecture ring and Architecture (5)作内力图 (4)求多余约束力 2)作剪力图 M MX M 11 P 576m 5120kN.m - 3 2 1 1 1 X 0 EI EI 1 80 = kN 9 X 1)作弯矩图 以杆件为隔离体,利用已知的 杆端弯矩,由平衡条件求出杆 端剪力
江蘇科技大学jiangsu university of sclence and technology3)作轴力图以适当的结点为隔离体,利用平衡条件求轴力8.9O二CDCBU8080F图(单位kN)Schoolof Civil EngineeringandArchitecture
School of Civil Engine School of Civil Engineering and Architecture ring and Architecture 3)作轴力图 以适当的结点为隔 离体,利用平衡条 件求轴力
江蘇科技大学jiangsu university of sclence and technology【例】作图示超静定刚架的内力图。OKN/mXmmCBCXB2m基本体系AA2m一(1)选择基本体系解:(2)建立力法典型方程[8,X, +02X, +A1p = 02,X, +2X, +A2p=0School of Civil Engineering andArchitecture
School of Civil Engine School of Civil Engineering and Architecture ring and Architecture 【例】 解: 10KN/m 2m 2m A B C 作图示超静定刚架的内力图。 (1)选择基本体系 (2)建立力法典型方程 00 21 1 22 2 2 11 1 12 2 1 PP X X X X 10KN/m A B C X1 X2 基本体系
江蘇科技大学jiangsu university of sclence and technology(3)求解系数项和自由项20.0LOKN/n2.01O+2.0M图M图AAA2.0321Sx2×2×2EI3EI3EI82×2×23EIEI3412XEIEI2-1100×2×20×2x2x20×2EIEIEI440×2×20×2EI2EISchool of Civil Engineering and Architecture
School of Civil Engine School of Civil Engineering and Architecture ring and Architecture (3)求解系数项和自由项 10KN/m A B C 20.0 MP图 A B C 1 A B C 1 2.0 2.0 M 1图 M 2图 2.0 EI EI 3EI 32 2 2 2 1 2 2 2 3 1 1 11 EI 3EI 8 2 2 2 3 1 1 22 0 EI EI 4 2 2 2 2 1 1 12 21 0 EI EI EI P 100 2 20 2 1 2 20 2 4 1 1 1 EI EI P 40 2 20 2 2 1 1 2 0