Minimum terms:There are 2 minimum terms in a n-variable logic function,which can be written as m:。(n个变量就有2n个最小项)。 Example:There are 23=8 minimum terms in a3-variable expression.(以3变量为例) Minimum ABC ABC ABC ABC ABC ABC ABC ABC Term ↓↓↓↓↓↓↓↓ Binary 000 001 010011100101 110 111 code ↓ Decimal 0 1 number mi mo m m m3 m m6 m-
◆ Example: There are 23=8 minimum terms in a 3-variable expression.(以3变量为例) Minimum Term Binary code Decimal number mi ◆Minimum terms: There are 2n minimum terms in a n-variable logic function, which can be written as mi 。(n个变量就有2n 个最小项)。 CBA m0 000 0 CBA m1 001 1 CBA BCA CBA CBA CAB ABC m2 m3 m4 m5 m6 m7 010 011 100 101 110 111 2 3 4 5 6 7
WY:便于书写和使用卡诺图. HOW:以使最小项的值为111B的变量取值对应 的十进制数为该最小项的编号。记为m。 3-Variable Minimum Terms ABCD _0000 mo ABCD 1000 ABCD )_0001m1 ABCD 1001mg ABCD 0010 m2 ABCD 1010m10 ABCD _0011m3 ABCD 1011m11 ABCD _0100m4 ABCD 1100m12 ABCD 0101m5 ABCD 1101 m13 ABCD 0110◆m6 ABCD 1110m14 ABCD 0111m7 ABCD 1111 m15
WHY: 便于书写和使用卡诺图. HOW: 以使最小项的值为 111B 的变量取值对应 的十进制数为该最小项的编号。记为mi 。 DCBA CDBA DCAB DCBA DBCA BCDA DCBA DCBA CDBA DCAB DCBA DABC DCBA ABCD DCBA 0000 DCBA 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 3-Variable Minimum Terms