1tg-1sorp9S‘9dD ((x+X)d)x(+X|+o)=+u :wyuoje Iqay 3u'xew Kq paoejda wns sey aepd '2 anens on yied Kjay!l asow ayn jo Auqeqoud ay sanl3 (2)Iu"a'l ‘(阳XT-x.x)Lěx=Tm Kqp3eId!Fyd3Xa‘8uμ3Hyo11 eonuapl (Fxxd (xdxu(+)d= (+oI+Xx.tx)d餐t dais aJow auo snjd ix awos on yied Kjay!l asou I+/x ypea on yied jay!l soW iiiisalens Kjay!l asow jo aouanbas aouanbas Kjay!l isow uoreueldxa KIay!I SoN
explanation ely lik Most states!!!! ely lik most of sequence 6= sequence ely lik Most +1 t x each to path ely lik Most step re mo one plus t x some to path ely lik most = max t x... 1 x ) +1 t 1: e| +1 t X,t x, . . . , 1 x( P max ) +1 t X| +1 t e( P = t x P max )t x| +1 t X( 1 −t x... 1 x )t 1: e|t x, 1 −t x, . . . , 1 x( P 1: f except filtering, to Identical yb replaced t max x =t 1: m 1 −t x... 1 ,)t 1: e|t X, 1 −t x, . . . , 1 x( P 1: m I.e., most the of y robabilit p the gives )i(t .i state to path ely lik : rithm algo Viterbi the giving max, yb replaced sum has date Up x max ) +1 t X| +1 t e( P = +1 t 1: m t )t 1: m)t x| +1 t X( P( 11 1–5 Sections 15, Chapter
CI g-I suorpos'gI s:Iw t:Iw Eiw 乙Iu Liw 乙00 ELIO LEZI L60 8181 sued jay!l isow 0L乙0 tEE0 19E0 SSIS Z818 a1.0 a11.1 as b a1.0 a1.4 ellejqwn asiof asiof syed eoeds a机.0 a1. ajels Suid uid Euind 乙u1DH uiy alduexa Iquo△
example Viterbi Rain 5 Rain 4 Rain 3 Rain 2 Rain 1 true false true false true false true false true false .0210 .0334 .0361 .5155 .8182 .0024 .0173 .1237 .0491 .1818 1:5 m 1:4 m 1:3 m 1:2 m 1:1 m state space paths most likely paths true true false true true umbrella 12 1–5 Sections 15, Chapter
E1g-1sorp9S‘9TdD (1S)O aeds pue (1S)O awn spaau wyoe pemypeq-pemo F+qI+YOL F+q 1L1+0D=+y :suo an uwnjoo se saBessaw puemypeq pue puemioy Z00 =103nl4=n44m83 060 (?=X)squawaje leuoRe!p'dags awn ypea oj 10 xuew osuaS ㄥ080 (=I-=x)=L xuew uonisuel 8020 {S‘T}s到X go u!ewo (o03 s!jlensn)alqeuen a sip 'us e s!X sIapow AoxIeN uOPp!H
dels mo vo Mark Hidden o) to is t E (usually riable va discrete single, a is t X } S, . . . , 1{ is t X of Domain e.g., ,)i =1 −t X| j =t X( P =ij T matrix ransition T 3. 0 7. 0 7. 0 3. 0 )i =t X|t e( P elements diagonal step, time each r fo t O matrix r Senso =1 O, ue tr =1 U with e.g., 0 9. 0 2. 0 0 rs: vecto column as messages rd a backw and rd a rwoF T+1 t Oα = +1 t 1: f > t 1: f t +2: k b +1 k OT =t +1: k b S( O time needs rithm algo rd a rd-backw a rwoF 2 )t S( O space and )t 13 1–5 Sections 15, Chapter