I 9-I duyD S-五'五HLdVHO SHHOMLHN NVISHAV NI HONHHHINT
orks netw yesian Ba in Inference 14.4–5 Chapter 1 14.4–5 Chapter
oμeya4 uoW u!eyp AoyeW Kq3uau!1 ewIxoddv◇ uone nwls onseypons Kq aouaajul anewixoddy uoneulw!B∂I9 euen Kq3 ualajul 1ex3◇ uoneJawnua Kq aouajaju!ex ourino
Outline enumeration yb inference Exact ♦ elimination riable va yb inference Exact ♦ simulation chastic sto yb inference ximate ro App ♦ rlo Ca Monte chain ov rk Ma yb inference ximate ro App ♦ 2 14.4–5 Chapter
-I duyD jonow jauens Mau e paau op Kym :uoneuejdx ileasow aue sanjen Kqeqod yolym :sIsKjeue Ansuas Xaua∂so133upI34pI叫M:uoI1euou!03neA (aouapina'uoigon awooino)d oy paunbal aouelejul ons!!qeqoud :uonewjojul Kn apnpoul syuomnau uoisipap :suoisipap jewndO (=x)d(=)d==x)d :souanb announfuo) (asof=s1m1s 'uo=sqybvI'fdwa=a6nDDsDDoN)d" (=X)d leuew Joue sod andwo :sauanb adw!s sysel aouaojul
tasks Inference ) e = E|i X( P rginal ma r osterio p compute : queries Simple ) se al f = ts tar S on, = hts Lig , empty =e Gaug | oGas N( P e.g., ) e = E,i X|j X( P) e = E|i X( P =) e = E|j X,i X( P: queries Conjunctive rmation; info y utilit include rks ow net decision : decisions Optimal ) idence ev action, | outcome ( Pr fo required inference robabilistic p next? seek to evidence which : rmation info of alue V critical? most re a values y robabilit p which : analysis y Sensitivit r? moto rter sta new a need I do why : Explanation 3 14.4–5 Chapter
awn (up)O'aeds (u)O :uoneawnue asy-yndap anisiney (w)d()d(a'gl)d"(a)d (g)d= (olu)d(old(a‘alp)de)d(a)d〖o= (wtga :s3μuB⊥d)o npoud 3uisn s3μnu31 urof ing34μM3y (uo3a)d〖〖0= (u‘C‘a)d0= (u)d/(u‘f‘a)d= (u‘a)d :yHom4u人ue8nqy1uo人uanb1duIS uonequasada 1dxa sil unonsuo Ajlengpe inoyM qulof ay woy sajqeuen ino wns o3 Kem quauyS uoryelownua Aq oouolojul
umeration en yb Inference actually without joint the from riables va out sum to ya w intelligent Slightly resentation rep explicit its constructing rk: ow net ry burgla the on query Simple E B J A M ) mj, | B( P ) mj, ( /P ) mj, , B( P = ) mj, , B( Pα = ) mj, a, e, , B( Pa Σe Σα = entries: CPT of duct ro p using entries joint full Rewrite ) mj, | B( P ) a| m( P) a| j( P)e, B| a( P)e( P) B( Pa Σe Σα = ) a| m( P) a| j( P)e, B| a( Pa Σ)e( Pe Σ) B( Pα = d( O space, ) n( O enumeration: depth-first Recursive n time ) 4 14.4–5 Chapter
g-'I duy f=人4hMp9pu3X3as到33a4M ('(sia)Isad)v-alvuannNd x ((d )d umngo1 as1a ('(s.IDA)ISad)TIV-HLVHWNNG x (()d)d umngoI uoy uI fi anjen sey人JI (s.mn)LSHd→X O'I umgaI uaq?(s.ID0)ixLdNd J! Jaqwnu jeal e sumngol (o's.iDa)TIV-aLvHaNnNG uongoung ((X)6)aZIIVWHON uIn351 (uq]SHVA)TIV-aIVHaNON-()6 X oy anjen yim a puaixe op X jo 'x anjen yoea ioJ Aadwa Allenu!'X Jano uonnquasip e(X)6 天∩C∩{X}s319euen4HMHo4 u ueis3 Keg e 'uq d sajqeuen joy sanjen panasqo alqeuen Kanb ay 'x :sandur X Jno uoninq!sip e sumnga.I (ug''X)ySV-NOILVHNnNG uoIouny wyz!loSfe uorelownuH
algorithm umeration En X over distribution a returns ) bn , e, X( tion-Ask Enumera function riable va query the , X: inputs E riables va r fo values observed , e Y ∪ E ∪ } X{ riables va with rk ow net esian y Ba a , bn y empt initially , X over distribution a ←) X( Q do X of i x value h eac for Xr fo i x value with e extend ) e ], bn [ ars V( te-All Enumera ←)i x( Q )) X( Q( Normalize return er numb real a returns ) e, vars ( te-All Enumera function 1.0 return then ) vars ( Empty? if ) vars ( First ←Y e in y value has Y if ) e ), vars ( Rest ( te-All Enumera × )) Y( a P| y( P return then return else P )y e ), vars ( Rest ( te-All Enumera × )) Y( a P| y( P y y = Y with extended e is y e where 5 14.4–5 Chapter