本题还可先将分母配方,再求原函数: s2+2s+5 (s+12+22 S+1 2 (s+1)2+22(s+1)2+2 由表8-1,得: f(t=e sin 2t e (2cos 2t-sin 2t) 2 √2+(-1)2e-(cos266°c0s2t-sin266°sin2t) =2×0.559c0s(2t+26.6°
本题还可先将分母配方,再求原函数: 2 2 2 ( 1) 2 2 5 ( ) + + = + + = s s s s s F s 由表 8-1,得: f t e t e t t t ( ) cos 2 sin2 2 − 1 − = − = 20.559 cos(2 + 26.6) − e t t (2cos2 sin2 ) 2 1 e t t t = − − 2 ( 1) (cos 26.6 cos 2 sin26.6 sin2 ) 2 2 2 1 e t t t = + − − − 2 2 2 2 ( 1) 2 2 2 1 ( 1) 2 1 + + − + + + = s s s
结论: 当F()=0的根有共轭复根s12=-a±jB时, 若s1=-a+jB,对应的待定系数为k1=K∠0, 则与共轭复根部分对应原函数是: f()=2× Ke- cost(Bt+6)
结论: 当 F(s)=0 的根有共轭复根 时, 若 ,对应的待定系数为 , 则与共轭复根部分对应原函数是: s1,2 = − j j k1 = K s1 = − + ( ) 2 cos( ) = + − f t K e t t