suonisodoud oiseq jo suoneulqwoo ueajoog Kuenlquy 0ZZ>dua83‘molle osje :9[乙=duaL“83 (papunoqun Jo papunoq)sajqeuen wopue snonunuo) anIsn]oxa Klleninw pue anisneyxa aq isnw sanje uonisodoud e sl uiD.l=ayiDaM (mousfipn01p‘uwl‘iums)o auo s!la4?DaM:83 (anluyul o aluy)sajqeuen wopue a1s! figinDo uanm osje 'uonisodoud e s!an.n=figinD (ifne e aney I op)fizzaD" sajqeuen wopuel ueajoog o jeuollsodold suorisodod IoJ xequAs
ositions prop for tax Syn riables va random olean Bo r o ositional Prop y?) cavit a have I (do ity av C e.g., ity cav written also osition, rop p a is ue tr = ity av C ) infinite r o finite ( riables va random Discrete i snow , oudy cl ain, r, sunny h of one is eather W e.g., osition rop p a is ain r = eather W exclusive mutually and exhaustive eb must alues V ) ounded unb r o ounded b( riables va random Continuous . 0. 22 < emp T e.g., w, allo also ; 6. 21 = emp T e.g., ositions rop p basic of combinations olean Bo ry Arbitra 11 13 Chapter
I I oduto squrod aldwes jo wns e sr quaa KIea asneoaq uorinq!s!p qurof ay Aq paiamsue aq ueo urewop e qnoqe uongsanb K.IOAd 800t90080'09290as1Df=i42DO Z009I00Z00tT'0 anng=fijiaDo mous fipnop ui.i fuuns =l344D3M :s3 njen o xuew乙×五e=(i42nDO‘a4?D3M)d (auod aldwes Kana")sA'asoyn uo quana woe Kene jo Au!qeqoud ay san18 s'A'I jo 1as e joj uolnquasip Aqeqoud quio (To4suns3Ip3 z!jewou)(T0‘800‘T0‘Z0〉=(344D3M)d :squawu3isse ajqissod le oj sanjen sani3 uonnq!sip K!l!qeqod aouapIna (Mau)Kue o jenle on Joud ja!laq on puodsauo 0=(fiuuns =JayaM)d pue I0=(on.1=fjaD)d suonisodoud jo san!qeqoud jeuon!puooun Jo oud Kiqeqod ioLId
y probabilit Prior ositions rop p of robabilities p unconditional r o r Prio 72 . 0 =) sunny = eather W( P and 1. 0 =) ue tr = ity av C( P e.g., evidence (new) any of rrival a to r rio p elief b to ond rresp co assignments: ossible p all r fo values gives distribution y Probabilit )1 to sums i.e., , rmalized no ( i1. 0, 08 . 0, 1. 0, 72 . 0h =) eather W( P the gives r.v.s of set a r fo distribution y robabilit p Joint oint) p sample every (i.e., r.v.s those on event atomic every of y robabilit p values: of matrix 2 ×4 a =) ity av C, eather W( P snow oudy cl ain r sunny = eather W 02 . 0 016 . 0 02 . 0 144 . 0 ue tr = ity av C 08 . 0 064 . 0 08 . 0 576 . 0 se al f = ity av C t join the yb ered answ eb can domain a out ab question ery Ev ts oin p sample of sum a is t en ev ery ev ecause b distribution 12 13 Chapter