积分表Bsin br-[x sin bxdx =-cosbxbx1sin"bxdx = sin(2bx)24bx?1x[xsin’ bxdx =sin(2bx)cos(2bx)8624.4b(r2J r sin? bxdx=.1xsin(2bx)cos(2bx)863462(466sin[(a-b)x]sin[(a +b)x][ sin ax sin bxdx =-α? +b?2(a-b)2(a+b)[xe'dx =bb2Jrerdx=et(_2x+2(6-6263Jx'e'"dx= n!n>-1,q>0940元11Je- dx =,b>02Vb0(2n)!元Jx"e-n dx =b>0,n=1,2,3...22a*n!VB2+0a'r?a"t"n!-"e-"dz=1+at+a>0, n=0,1,2,..qre++2!n!
积分表 2 2 2 2 2 3 2 2 2 3 2 2 2 1 sin sin cos 1 sin sin(2 ) 2 4 1 sin sin(2 ) cos(2 ) 44 8 1 sin sin(2 ) cos(2 ) 6 48 4 sin[( ) ] sin[( ) ] sin sin 2( ) 2( ) bx x x bxdx bx bx b b x bxdx bx b x x x bxdx bx bx b b xx x x bxdx bx bx bb b a bx a bx ax bxdx a b ab ab xe d 2 2 2 2 2 2 3 1 0 0 2 21 21 0 2 2 1 1 2 2 ! 1, 0 1 0 2 (2 )! 0, 1, 2,3. 2 ! ! 1 . 0, 0,1, 2, 2! ! bx bx bx n qx n bx n bx n n n n n az at n t x x e b b x x x e dx e bb b n x e dx n q q e dx b b n x e dx b n n b n at at z e dz e at a n a n
量子化学习题解(仅供参考)第一章量子力学基础1.1如果g=Af对每一组A与f求g。(3) A=(),f=sinx;(1) A=dldx, f=cos(x2+1);:(2)A=5,f=sinx;(4) A=exp,f-lnx;(5) A=dldx,f-=ln3x;(6) A=d/dx2+3xd/dx, f=-4x3 ;(4)x (5)-1/x2(6) A=24x+36x3(1)-2xsin(x2+1)(2) 5sinx(3) sinx1.2如A/(x)=3x2(x)+2xdfldx,(x)为任意函数,给出A的表达式A=3x2+2xd/dx1.3给出3个满足Ae=er的A的表达式A=dldxA=iA=dldx21.4 如果A=dldx, B=x2,计算(1)ABx;(2)BAr;(3)AB(x);(4)BA(x);(1) ABx= dldx(x5)=20x3(2) BAr3=6r3(3) AB(x)= d/dx[x(x)]=xf(x)+4xf(x)+2(x)(4) BA(x)=xf(x)1.5计算下列对易子(1)[x, y] (2)[Px, P,](3)[x,p,](4) [x2,p](5) [x",p,](6)[1/x, p,] (7)[/x, p] (8)[xp, -yp,p -zp,] (9)[x2( /y),y(0/ax)])(10)[sinx,dldx];(11)[/dx2,ax?+bx+c](a,b,c为常数):(12)[dldx,d/dx](1) [x, y]=0(2)[Pr, P,]=0(3)[x,p,]=xp,-p,x=xp,-(xp,-ih)=ih(4)[x2,p]=xp.-px?=2ihx(5) [x",p,]= nihx"-(6)[/x, P,] =- hX(7)[/x,P1- (-ip)Y[xp,-ypr,yp: -zp,]=(xp,-yp:)(yp. -zp,)-(p: -zp,)(xp,-yp)(8)=[x,(op.)-R- +yp,P,]-[p.P,-pR-x +p,(p)]=p-ihxp:+pp-pR-pp+ihzp=it(zp,-xp.)
量子化学习题解(仅供参考) 第一章 量子力学基础 1.1 如果 g= Âf 对每一组  与 f 求 g。 (1) Â=d/dx, f=cos(x2 +1); (2) Â=5, f=sinx; (3) Â=( )2 , f=sinx; (4) Â=exp , f=lnx; (5) Â=d2 /dx2 , f=ln3x; (6) Â=d2 /dx2 +3xd/dx, f=4x3 ; (1) 2xsin(x2 +1) (2) 5sinx (3) sin2 x (4) x (5) 1/x2 (6) Â=24x+36x3 1.2 如 Âf(x)=3x2 f(x)+2xdf/dx,f(x)为任意函数,给出  的表达式 Â=3x2 +2xd/dx 1.3 给出 3 个满足 Âex =ex的  的表达式 Â=d/dx Â=ˆ 1 Â=d2 /dx2 1.4 如果 Â= d2 /dx2 , ˆ B= x2 , 计算(1)  ˆ Bx3 ;(2) ˆ BÂx3 ;(3)  ˆ Bf(x);(4) ˆ BÂf(x); (1)  ˆ Bx3 = d2 /dx2 (x5 )=20x3 (2) ˆ BÂx3 =6x3 (3)  ˆ Bf(x)= d2 /dx2 [x2 f(x)]=x2 f"(x)+4xf'(x)+2f(x) (4) ˆ BÂf(x)= x2 f"(x) 1.5 计算下列对易子 (1)[x, y] (2)[, ] ˆ ˆ x y p p (3)[, ] ˆ x x p (4) 2 [, ] ˆ x x p (5) [, ] ˆ n x x p (6)[1 , ] ˆ x x p (7) 2 [1 , ] ˆ x x p (8)[,] ˆ ˆ ˆ ˆ y xz y xp yp yp zp (9) 22 2 [ ( ), ( )] x yy x (10)[sinx, d/dx];(11)[ d2 /dx2 , ax2 +bx+c](a, b, c 为常数);(12) [d/dx, d2 /dx2 ] (1) [x, y]=0 (2)[, ] ˆ ˆ x y p p =0 (3)[, ] ( ) ˆ ˆˆ ˆ ˆ x xx x x x p xp p x xp xp i i (4) 22 2 [, ] 2 ˆ ˆ ˆ x xx x p x p px i x (5) 1 [, ] ˆ n n x x p ni x (6) 2 [1 , ] ˆ x i x p x (7) 2 3 2 [1 , ] ˆ ˆ x x x p ixp x (8) 2 [ , ] ( )( ) ( )( ) ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [() ˆ ˆ ˆ ˆ y xz y y x z y z y y x y z xz xp yp yp zp xp yp yp zp yp zp xp yp xp yp y p p 2 ˆ y xzp 2 ˆ ˆ ] [ ˆ ˆ ˆ ˆ xy zy zx yzp p xyp p y p p 2 ˆ y xzp ˆ ( )] ˆ ˆ ˆ y x y z zp yp xyp p ˆ ˆ ˆ z xy i xp yzp p ˆ ˆ z y xyp p ˆ ˆ y x yzp p ˆ ( ) ˆ ˆ x x z i zp i zp xp