随着n的增大L将更为复杂。 在I上定义运算fⅣ,使得 f(a1,…,a)=(321…2a),这里a;∈I j=1,k),即f为Ⅰ上的第个k元运 定义192X∪C上的自由T(代数称为项 集,I中的每个元素称为项,不含个体变 元的项称为历亟,I上的代数运算f称为 第个n元函数词。如果XUC,T可列, 项集I也是可列集
随着n的增大In将更为复杂。 在I上定义运算fk i :Ik→I,使得 fk i (a1 ,,ak )=(fk i ,a1 ,,ak ),这里ajI (j=1,,k),即fk i为I上的第i个k元运 算。 定义19.2:X∪C上的自由T(1) -代数I称为项 集,I中的每个元素称为项,不含个体变 元的项称为闭项,I上的代数运算fn i称为 第i个n元函数词。如果X∪C,T(1)可列, 项集I也是可列集
例:设C=②,T=({f1,ar(f1)=1,ar(1)=2,求 09119129
例:设C=,T=({f1 1 ,f2 1 |ar(f1 1 )=1, ar(f2 1 )=2,求 I0,I1,I2
定义193:设关系集R=RR表示某个对象 集上的所有m元关系,即Rn={Rnar(Rn)=m} 定义19.4对任意的Rn∈RnR,称I上的m元关 系Ru(t1,…,t为上的原子公式特别地,R0 就是原子命题公式,这里t,…,tn∈I,R称为第i 个n元谓词。基于关系集R的所有I上的原子公 式全体称为原子公式集,记为Y 原子公式集Y是可列集。 C=,T(=,R=R0这里R为0元关系集)时,原子公 式就是命题逻辑中的命题变元即原子命题。2
定义19.3:设关系集R= n=0 Rn Rn表示某个对象 集上的所有n元关系,即Rn ={Rn i |ar(Rn i )=n} 定义19.4:对任意的Rn iRnR,称I上的n元关 系Rn i (t1 , ,tn )为I上的原子公式(特别地,R0 i 就是原子命题公式),这里t1 , ,tnI,Rn i称为第i 个n元谓词。基于关系集R的所有I上的原子公 式全体称为I的原子公式集,记为Y。 原子公式集Y是可列集。 C=, T(1)=,R=R0 (这里R0为0元关系集)时,原子公 式就是命题逻辑中的命题变元即原子命题