Training a1,a2.a7 Sample t -at Noise ◆????◆ Predicter
Training 𝛼ത1, 𝛼ത2,… 𝛼ത𝑇 𝑥0 𝜀 𝛼ത𝑡 + 1 − 𝛼ത𝑡 = Noise Predicter t ????? 𝜀 𝑥 𝜀 0 Sample 𝑡
想像中… input Random ground sample truth Step 1 Step 2 input 實際上… 一t Xo E ground input truth
想像中 … 實際上 … Step 1 Step 2 Random sample + + …… input input ground truth 𝛼ത𝑡 + 1 − 𝛼ത𝑡 = 𝑥 𝜀 0 ground truth input
Inference Algorithm 2 Sampling 1:xr~W(0,I) 2:fort=T....,1 do 3: zN(0,I)if t 1,else=0 sample a noise?! 4: Xt-1=Vai (x-器ex,)+1z XT 5:end for 1a2.瓦T 6:return xo C1,02…CT 1 1-0t 1-at Xt-1 Noise Z Predicter
Inference 𝑡 Noise Predicter - 𝑥𝑇 𝑥𝑡 1 − 𝛼𝑡 1 − 𝛼ത𝑡 1 𝛼𝑡 𝑥𝑡−1 𝑧 + sample a noise?! 𝛼ത1, 𝛼ത2,… 𝛼ത𝑇 𝛼1, 𝛼2,… 𝛼𝑇
影像生成模型本質上的共同目標 Real Image Network G(z)=x
影像生成模型本質上的共同目標 Network 𝑧 𝑥 Real Image 𝐺 𝑧 = 𝑥
影像生成模型本質上的共同目標 Real Image Network 一隻在奔跑的狗 (Condition)
影像生成模型本質上的共同目標 Network 𝑧 𝑥 Real Image 一隻在奔跑的狗 (Condition)