7.1.3 FacingReinforcementConnections7-137.27-14VEHICULARIMPACTEVENTS7-157.2.1Traffic Barriers....7-177.2.2Postand Beam Railings7.37-18FLOODSANDSCOURFHWA NHI-10-025TableofContentsMSE Walls and RSS - Vol IIxviiNovember2009
7.1.3 Facing Reinforcement Connections . 7-13 7.2 VEHICULAR IMPACT EVENTS . 7-14 7.2.1 Traffic Barriers. 7-15 7.2.2 Post and Beam Railings . 7-17 7.3 FLOODS AND SCOUR . 7-18 FHWA NHI-10-025 Table of Contents MSE Walls and RSS – Vol II xvii November 2009
Table of ContentsFHWANHI-10-025MSE Walls and RSS -Vol IIxviliNovember2009
FHWA NHI-10-025 Table of Contents MSE Walls and RSS – Vol II xviii November 2009
LISTOFTABLES-VolumeITable 1-1.Summary of Reinforcementand FaceDetails forMSE Wall Systems.1-7Table 1-2.RepresentativeListofGeogridandGeotextileReinforcementManufacturers1-11and Suppliers....2-43Table 2-1.Typical MinimumLengthofReinforcementTable 2-2.2-43MinimumMSEWEmbedmentDepthsTable 2-3.RelationshipBetweenJointWidthandLimitingDifferential.2-46Settlements for MSE Precast Panels...3-3Table 3-1.MSEWall SelectGranularReinforcedFill RequirementsTable 3-2.RSSGranularReinforced Fill Requirements.3-6Table 3-3.RecommendedLimitsofElectrochemicalPropertiesforReinforcedFillswith.3-9SteelReinforcement..Table 3-4.Recommended Limits of Electrochemical PropertiesforReinforcedFills with3-10GeosvntheticReinforcementsTable 3-5.Basic Aspects of Reinforcement Pullout Performance in Granular3-15andCohesiveSoils of LowPlasticity3-17Table 3-6Summary of Pullout CapacityDesign Parameters.Table 3-7.3-26Minimum Galvanization Thickness by Steel Thickness.3-26Table 3-8.Steel Corrosion Rates for Mildly Corrosive Reinforced Fill3-32Table 3-9.Installation Damage Reduction Factors.3-34Table 3-10Anticipated Resistance of Polymers to Specific Environments.Table 3-11.3-36Durability (Aging)ReductionFactors forPET.Table 3-12.MinimumRequirementsforuseofDefaultDurabilityReductionFactors3-37(RFp)forPrimaryGeosyntheticReinforcementTable 3-13MinimumRequirementsforuseof PreliminaryDesignReductionFactor (RF)3-40forPrimaryGeosyntheticReinforcement.Table 3-14Additional MBWColdWeatherRequirementsRecommendedby.3-45Mn/DOT(2008)Table 4-1.Typical MSEWall LoadCombinationsandLoadFactors(afterTable3.4.1-1.4-4AASHTO.2007)Table 4-2.Typical MSE Wall Load Factors for Permanent Loads, Yp(after Table 3.4.1-24-4AASHTO.2007)Table 4-3.BasicLRFDDesign Steps for MSEWalls.4-8Table 4-4.EquivalentHeightofSoilheg,forTrafficLoadingonAbutments4-17Perpendicular to Traffic (Table 3.11.6.4-1, AASHTO (2007))Table 4-5.External Stability Resistance Factors for MSE Walls (Table 11.5.6-1,4-19AASHTO (2007))Table 4-6..4-29Bearing Resistance Factors (Table 10.6.3.1.2a-1, AASHTO (2007)Table 4-7.Resistance Factors for Tensile and Pullout Resistance for MSE Walls (afterTable 11.5.6-1.AASHTO(20074-48Table 4-8.ExampleMBWFaced MSEWall StandardDesign(MinnesotaDOT,2008).,4-82FHWA NHI-10-025Tableof ContentsMSEWallsandRSS-VolIIxixNovember2009
LIST OF TABLES – Volume I Table 1-1. Summary of Reinforcement and Face Details for MSE Wall Systems. . 1-7 Table 1-2. Representative List of Geogrid and Geotextile Reinforcement Manufacturers and Suppliers. 1-11 Table 2-1. Typical Minimum Length of Reinforcement . 2-43 Table 2-2. Minimum MSEW Embedment Depths . 2-43 Table 2-3. Relationship Between Joint Width and Limiting Differential Settlements for MSE Precast Panels . 2-46 Table 3-1. MSE Wall Select Granular Reinforced Fill Requirements . 3-3 Table 3-2. RSS Granular Reinforced Fill Requirements. 3-6 Table 3-3. Recommended Limits of Electrochemical Properties for Reinforced Fills with Steel Reinforcement . 3-9 Table 3-4. Recommended Limits of Electrochemical Properties for Reinforced Fills with Geosynthetic Reinforcements . 3-10 Table 3-5. Basic Aspects of Reinforcement Pullout Performance in Granular and Cohesive Soils of Low Plasticity . 3-15 Table 3-6. Summary of Pullout Capacity Design Parameters. . 3-17 Table 3-7. Minimum Galvanization Thickness by Steel Thickness. 3-26 Table 3-8. Steel Corrosion Rates for Mildly Corrosive Reinforced Fill . 3-26 Table 3-9. Installation Damage Reduction Factors. . 3-32 Table 3-10. Anticipated Resistance of Polymers to Specific Environments. 3-34 Table 3-11. Durability (Aging) Reduction Factors for PET. . 3-36 Table 3-12. Minimum Requirements for use of Default Durability Reduction Factors (RFD) for Primary Geosynthetic Reinforcement. 3-37 Table 3-13. Minimum Requirements for use of Preliminary Design Reduction Factor (RF) for Primary Geosynthetic Reinforcement. . 3-40 Table 3-14. Additional MBW Cold Weather Requirements Recommended by Mn/DOT (2008). . 3-45 Table 4-1. Typical MSE Wall Load Combinations and Load Factors (after Table 3.4.1-1, AASHTO, 2007) . 4-4 Table 4-2. Typical MSE Wall Load Factors for Permanent Loads, γp (after Table 3.4.1-2, AASHTO, 2007) . 4-4 Table 4-3. Basic LRFD Design Steps for MSE Walls . 4-8 Table 4-4. Equivalent Height of Soil, heq, for Traffic Loading on Abutments . Perpendicular to Traffic (Table 3.11.6.4-1, AASHTO {2007}) . 4-17 Table 4-5. External Stability Resistance Factors for MSE Walls (Table 11.5.6-1, AASHTO {2007}) . 4-19 Table 4-6. Bearing Resistance Factors (Table 10.6.3.1.2a-1, AASHTO {2007}) . 4-29 Table 4-7. Resistance Factors for Tensile and Pullout Resistance for MSE Walls (after Table 11.5.6-1, AASHTO (2007. 4-48 Table 4-8. Example MBW Faced MSE Wall Standard Design (Minnesota DOT, 2008) . 4-82 FHWA NHI-10-025 Table of Contents MSE Walls and RSS – Vol II xix November 2009
Table 5-1.Values of BforVarious C.Values for Soils withless than50%Passing theNo. 200 Sieve ...5-27Table5-2Values of B and AOS for Soils with more than 50% Passing the No.200 Sieve5-27BasedonTypeofGeotextile........5-29Table5-3Geotextile Survivability Requirements (AASHTO M288, 2006)Table 5-4Recommended MinimumPropertiesfor General Geomembrane InstallationSurvivability(afterKoerner,1998)5-33FHWANHI-10-025TableofContentsNovember2009MSEWallsandRSS-VolIIXX
Table 5-1. Values of B for Various Cu Values for Soils with less than 50% Passing the No. 200 Sieve . 5-27 Table 5-2. Values of B and AOS for Soils with more than 50% Passing the No. 200 Sieve Based on Type of Geotextile . 5-27 Table 5-3. Geotextile Survivability Requirements (AASHTO M 288, 2006) . 5-29 Table 5-4. Recommended Minimum Properties for General Geomembrane Installation Survivability (after Koerner, 1998) . 5-33 FHWA NHI-10-025 Table of Contents MSE Walls and RSS – Vol II xx November 2009
LISTOFFIGURES-VolumeIFigure 1-1.Generic cross section of an MSE structure-4Figure 1-2.Genericcross sectionsofreinforced soil slopestructures.reinforcementsusedto:(a)increase stability of a slope; and (b)provide improved compaction andsurficial stability at edge of a slopes...1-5Figure 2-1.Representative MSE applications (a) retaining wall; (b) access ramp; (c)2-2waterfront structure,and (d)bridgeabutment.Figure 2-2.2-3MSEwallstosupporttemporarybridgeabutmentroadwayembankmentFigure 2-3.MsEwall used to temporarily support a permanent roadway embankmentfor2-3phasedconstruction.Figure 2-4.2-5Applicationofreinforcedsoilslopes.Figure 2-5.2-10Costevaluationofreinforcedsoilslopes.Figure 2-6.2-13ExampleMSE wall surfacetreatments.Figure 2-7.2-14Examples of commercially available MBW units (NCMA, 1997).2-21Figure 2-8.Erection of precast panels..Figure 2-9.2-22Fillspreadingandreinforcementconnection2-23Figure 2-10.Compaction of reinforced wall fillFigure 2-11.2-25LiftconstructionsequenceforgeosyntheticfacedMSEwalls.2-26Figure 2-12.TypicalgeosyntheticfaceconstructiondetailFigure 2-13.2-27Types of geosyntheticreinforced soilwallfacing (after Wu,1994)Figure 2-14.Reinforced slope construction:(a)geogrid and fill placement, (b)soil filled2-29erosioncontrol matplacement;and (c)finished,vegetated1:1 slope..Figure 2-15.Empirical curve for estimating probable anticipated lateral displacementduring construction for MSE walls (after FHWA 89-043 (Christopher et al.1990).2-41Figure 2-16.MSEwall embedmentdepth requirements,(a)level toe condition and (b)2-44benchedslopetoecondition2-48Figure 2-17.MSEwallconstructiononMn/DOTCrosstownProject,2008.Figure 2-18.2-49Veterans Memorial Overpass.2-49Figure 2-19.MSEtruebridgeabutment..2-50Figure 2-20.Typical cross section, VMO project.2-51Figure 2-21.SeaTac Airport runway extension MSE wall2-52Figure2-22GuanellaPasswire-facedwall2-52Figure 2-23.Guanella Pass architectural concrete faced wallFigure 3-1...3-8Examples of reinforced fill zone extension beyond the reinforced zone..3-11Figure 3-2.StresstransfermechanismsforsoilreinforcementFigure 3-3.3-13CoverageratioFigure 3-4.Definition of grid dimensions for calculating pullout capacity ...3-18Figure 3-5.Parameters for metal reinforcement strength calculations showing (a) steel3-24strips and (b) metallic grids and bar mats.Figure 3-6.3-29Long-termgeosynthetic reinforcement strength conceptsFigure 3-7.Large, wet-cast concrete face unit with reinforcement placed between units. ..3-48Figure 3-8.Large, wet-cast concrete face unit with embedded reinforcement connectors..3-49Figure 3-9.3-49Geocell face unit with vegetation.FHWA NHI-10-025Table of ContentsMSEWallsandRSS-VolIIxxiNovember2009
LIST OF FIGURES – Volume I Figure 1-1. Generic cross section of an MSE structure. . 1-4 Figure 1-2. Generic cross sections of reinforced soil slope structures, reinforcements used to: (a) increase stability of a slope; and (b) provide improved compaction and surficial stability at edge of a slopes. . 1-5 Figure 2-1. Representative MSE applications (a) retaining wall; (b) access ramp; (c) waterfront structure; and (d) bridge abutment. . 2-2 Figure 2-2. MSE walls to support temporary bridge abutment roadway embankment . 2-3 Figure 2-3. MSE wall used to temporarily support a permanent roadway embankment for phased construction. 2-3 Figure 2-4. Application of reinforced soil slopes. . 2-5 Figure 2-5. Cost evaluation of reinforced soil slopes. . 2-10 Figure 2-6. Example MSE wall surface treatments. . 2-13 Figure 2-7. Examples of commercially available MBW units (NCMA, 1997). 2-14 Figure 2-8. Erection of precast panels. . 2-21 Figure 2-9. Fill spreading and reinforcement connection. 2-22 Figure 2-10. Compaction of reinforced wall fill. 2-23 Figure 2-11. Lift construction sequence for geosynthetic faced MSE walls. . 2-25 Figure 2-12. Typical geosynthetic face construction detail. . 2-26 Figure 2-13. Types of geosynthetic reinforced soil wall facing (after Wu, 1994) . 2-27 Figure 2-14. Reinforced slope construction: (a) geogrid and fill placement; (b) soil filled erosion control mat placement; and (c) finished, vegetated 1:1 slope . 2-29 Figure 2-15. Empirical curve for estimating probable anticipated lateral displacement during construction for MSE walls (after FHWA 89-043 {Christopher et al., 1990}) . 2-41 Figure 2-16. MSE wall embedment depth requirements, (a) level toe condition and (b) benched slope toe condition. 2-44 Figure 2-17. MSE wall construction on Mn/DOT Crosstown Project, 2008. . 2-48 Figure 2-18. Veterans Memorial Overpass. 2-49 Figure 2-19. MSE true bridge abutment . 2-49 Figure 2-20. Typical cross section, VMO project . 2-50 Figure 2-21. SeaTac Airport runway extension MSE wall. 2-51 Figure 2-22. Guanella Pass wire-faced wall. 2-52 Figure 2-23. Guanella Pass architectural concrete faced wall . 2-52 Figure 3-1. Examples of reinforced fill zone extension beyond the reinforced zone. . 3-8 Figure 3-2. Stress transfer mechanisms for soil reinforcement. . 3-11 Figure 3-3. Coverage ratio. 3-13 Figure 3-4. Definition of grid dimensions for calculating pullout capacity . 3-18 Figure 3-5. Parameters for metal reinforcement strength calculations showing (a) steel strips and (b) metallic grids and bar mats . 3-24 Figure 3-6. Long-term geosynthetic reinforcement strength concepts . 3-29 Figure 3-7. Large, wet-cast concrete face unit with reinforcement placed between units. . 3-48 Figure 3-8. Large, wet-cast concrete face unit with embedded reinforcement connectors. . 3-49 Figure 3-9. Geocell face unit with vegetation. . 3-49 FHWA NHI-10-025 Table of Contents MSE Walls and RSS – Vol II xxi November 2009