·8· 物理化学学习及考研指导 标准摩尔生成焓的主要用途是用来计算在相同反应条件下的摩尔反应焓 变,即 4H(298.15K)=2%△H8(B,298.15K 离子的标准摩尔生成焓是在规定H+在无限稀释的水溶液中的标准摩尔生成 焓为零的相对基础上得到的。 2.标准摩尔燃烧焓△H品(T) 在标准压力和指定温度下,可燃烧物质B(B的系数%=一1)完全燃烧成相同 温度的指定产物时的焙变,称为物质B在该温度下的标准摩尔燃烧焓,用符号 △H(B,相态,T)表示。一般热力学数据表上列出的是在298.15K下的数据。 标准摩尔燃烧焓的相对标准是规定那些指定产物[如CO2(g),H2O(1)等]和 助燃剂O2(g)的燃烧焓为零。它的主要用途是计算在相同反应条件下的标准摩尔 反应焓变,即 A,HR(298.15K)=-%AH(B,298.15K) 3.规定熵值S(T) 因为熵的绝对值很难得到,所以热力学第三定律规定,在0K时任何完整晶体 的熵等于零。这样,从0K到温度T计算得到的熵值称为规定熵(在积分过程中 如有相变,积分要分段进行,还要加上相变嫡)。在298.15K时的标准摩尔熵值可 查阅热力学数据表。标准摩尔嫡的主要用途是计算化学反应中的熵变,即 △S8(298.15K))=于%S8(B,298.15K) 4.标准摩尔生成Gibbs自由能△G品(T) 在标准压力和反应温度T时,由稳定单质(作为参考态)生成产物B(产物的系 数%=1)时反应的摩尔Gibbs自由能的变化值称为物质B在该温度下的标准摩 尔生成Gibbs自由能,用符号△G层(B,相态,T)表示。这就相当于规定了作为参 考态的稳定单质的标准摩尔生成Gibbs自由能等于零。在298.15K时,物质的标 准摩尔生成Gbbs自由能数值可以从热力学数据表上查阅。 标准摩尔生成Gbbs自由能的主要用途是用来计算在相同反应条件下的标准 摩尔反应Gibbs自由能的变化值,即 4,G8(298.15K)-∑%△G2(B,298.15K) 所得的△,G品(298.15K)值在计算标准平衡常数时非常有用。 对于有离子参加的反应,规定H(aq,m+=1.0mol·kg1)的标准摩尔生成
第1章化学热力学 。9 Gibbs自由能等于零,由此也可求出其他离子的标准摩尔生成Gibbs自由能。在 电解质溶液中,通常浓度使用质量摩尔浓度,此时各物质的标准态是%= 1mol·kg1,且具有稀溶液性质的假想状态。 (八)化学反应的热效应 化学反应的热效应是指系统按所写的反应计量方程,在反应进度为lol时 反应物和产物处于相同温度下,系统所放出或吸收的热量。标明热效应的化学计 量方程称为热化学方程式。如果由若干个化学计量方程经相加或相减,得出了另 一个新的计量方程,则该新的计量方程的热效应就等于以上计量方程的热效应相 加或相减所得的值,当然反应的条件都应相同,这就是Hess定律。Hess定律说 明了在相同的反应条件(等压或等容)下,不管反应是一步或多步完成,其热效应是 相同的。利用Hess定律可以求得那些不易由实验测定的反应的热效应。 反应条件不同,显然所得的热效应也不同。在等容条件下测定的热效应称为 等容热,用Q表示,在等压条件下测定的热效应称为等压热,用Qp表示。对同 反应,两者之间的关系为 Q。=Qw十△RT 式中,△是气体物质的生成物与气体物质的反应物物质的量之差值。因为在等压 过程中系统与环境之间可能会有膨胀功的交换,所以一般Q>Q,。若反应前后 气体分子数不变,或是凝聚相反应,则Qp=Q。 对于指定的化学计量方程,在不做非膨张功时,当反应进度为1mol,等容条件 下的热效应就等于摩尔反应热力学能的变化值,即△U=Qv,等压条件下的热效 应就等于摩尔反应焓的变化值,即△Hm=Qp,两者的关系为 A:Hm=△Um+∑BRT 这相当于在上面热效应关系式的双方都除以反应进度,显然热力学函数变化值 的下标“m”是指反应进度=1mol时的变化值.式中∑是指参与反应的所有 气相物质的系数之代数和,对生成物系数取正值,对反应物系数取负值。如果计量 方程呈倍数的关系,则△Um和△Hm也呈倍数的关系。 燃烧热的测定一般在刚性容器氧弹中进行,得到的是等容热效应,而绝大部分 的反应热效应是在大气压力下测定的,是等压热效应。 (九)化学反应进度 通常可以把任意的化学反应式写成: dD+eE+.→fF+gG+
·10 物理化学学习及考研指导 写成更一般的形式为0=∑B,式中B代表反应式中的任一组分,代表所给化 学反应式中d,f,g,.等化学计量系数。是量纲一的量,对反应物取负值,对 生成物%取正值。反应进度的定义为 ()兰阳(0)+p 式中,(0)代表反应进度=0(反应尚未开始)时B的物质的量,是原始给定量, 在给定条件下是一个常数。()代表B组分在反应进度为E时的物质的量,的 单位是mol。 对定义式微分得 de=dng 对于有限量的变化,则得 4-4s 引人反应进度的最大优点是,不论反应进行到什么时刻,都可用任一反应物或 任一生成物来表示反应进行的程度,所得的值总是相等的。例如,对于反应 dD+eE+.→fF+gG+. D E F 采用反应进度这一概念时必须与化学反应的计量方程对应(即必须给出化学 反应方程式),当反应按所给反应式的计量系数比例进行了一个单位的化学反应 时,这时反应进度e等于1mol。 化学反应的摩尔焙变、摩尔熵变和摩尔Gbbs自由能的变化都是指按所给的 化学计量方程在反应进度为1mol时的变化值。在判断化学反应的方向时,可以 用反应系统的Gibbs自由能随反应进度的变化情况(aG/a)r,p的值来判断。在电 化学中,根据可逆电池的净反应式,计算反应进度为1mol时电池反应的△,G品, △H和△S鼎的值。在化学动力学中,利用反应进度随时间的变化率来定义反应 速率,一器可见,只要涉及化学反应,就要写出化学反应的计量方程,就要用 到反应进度的概念。 (十)热力学对气体的应用 热力学中主要研究的是理想气体,少数是非理想气体,非理想气体中具有代表 性的是van der Waals气体。理想气体的微观模型是气体分子本身占有的体积与 容积相比可以忽略不计,分子之间的相互作用也可以不予考虑,这样处理就很方
第1章化学热力学 11÷ 便。理想气体实际上是不存在的,但在高温或低压下的实际气体可以作为理想气 体处理。理想气体的状态方程式为pV=RT。 van der Waals在理想气体的基础上对压力和体积项略加校正,使之可适用于 压力不是特别高的实际气体,称为van der Waals气体,其状态方程为 (+)w.-6)= 一称为内压力,是考虑到分子之间有相互作用而加人的压力校正项,6是考虑到 气体分子自身占有的体积而加入的体积校正项,a和b称为van der Waals常量, 常见气体的a,b值有表可查。 l.Joule实验 Joule通过一定量气体的真空膨胀而未观察到温度的变化,从而得出了理想气 体的热力学能仅是温度的函数这个重要结论,也推广到理想气体的焓、等容热容 C,和等压热容C。都仅是温度的函数。利用这个结论对今后的解题有很多好处。 例如,若遇到理想气体的等温物理过程(仅是p,V的改变,而不是化学变化也不是 相变),则△U=0,△H=0,Q=一W,△A=△G=一T△S,这样可以简化计算,节省 时间。对于理想气体的任何物理变化(p,V,T变化)过程,热力学能和焓的变化都 可用如下公式计算: aw=cdrH= 若不是理想气体,这两个计算公式中前者一定是等容过程,后者一定是等压 过程。 2.理想气体的C。与Cv之差 对于任何气体,C,与Cv之间的关系式为 G-a=[+(0,]) 对理气体因为引,-6,所以。 C,-Cw=R或Cpm-Cw,m=R 所有气体的C恒大于Cv,而液体水的C。与Cv关系比较特殊,在4℃ 时,Cpm=Cv,ms 因为理想气体的Cv,m可以用经典的能量均分原理来计算(例如,单原子气体
·12· 物理化学学习及考研指导 的Cn=三R,双原子气体的Cn=号R),从而可以求得Cm的值,也就得到了两 者的比值,C.。 ,“=Y,这个关系式可用于理想气体绝热可逆过程方程式的计算。在 已知Y值的情况下,可以反过来判断理想气体分子中的原子数目。 3.绝热过程功的计算 因为Q=0,故△U=W,对于理想气体,设Cw是与温度无关的常数,则△U= [CvdT=C,(T,一T),只要知道始终态的温度,就可以计算绝热过程的△W和 W,不论该绝热过程是否可逆(因为热力学能是状态函数).但在计算终态温度T2 时有时要用到绝热可逆过程的过程方程式。 对于理想气体的绝热可逆过程,其过程方程式为 TVr1=常数V”=常数pT?=常数 式, ,于是绝热可逆过程的功为 W=DiV:-PV:R(T:-T) y一1 y-1 这个公式原则上只适用于理想气体的绝热可逆过程,因为在推导该公式时用了绝 热可逆过程的方程式。但是,因为C。一Cw=R,所以代人Y的表示式,得W= Cw(T2一T),所以也可用于理想气体的绝热不可逆过程,可逆与否只是计算Tz的 方法不同,数值也不等。 由于绝热可逆膨胀过程是系统消耗热力学能做功,所以当终态体积相同时,对 外做的功越多,则终态温度越低。所以绝热可逆膨胀因为做的功多,终态温度会比 绝热不可逆膨胀的低。对于绝热不可逆过程,可以设计一个始终态相同的除绝热 以外的其他可逆过程,因为从同一始态出发,绝热可逆和绝热不可逆过程不可能达 到相同的终态。 4.实际气体的Joule-Thomson效应 节流过程是一个等焓过程,即△H=0。由于理想气体的焦-汤系数r=0,所 以理想气体通过节流实验温度不变,也就是说理想气体不可能被液化。节流过程 是在绝热条件下直接测量气体本身的温度,比Joule实验更精确。实际气体的4T 若大于零,则通过节流实验气体温度会下降,有可能被液化。若4T<0,则通过节 流实验,气体温度不但不会下降,反而会升高。 工业上利用节流效应可使空气液化,获得液氮和液氧,液氮可作为冷冻剂,液