x2=j-B6-B1=-2(y-B1)-a1(y-B-B1)+B2u 整理: y+a,y+a,y=bu+bu+b,u (2-4-1 y+ay+a2y βn+(β0a1+β1)i+(B142+a1B1+B2)u 与(24-1)比较,可知有: β0=bo 阝1+B1=b1 阝1=b1-a1B0 βa2+a1B1+B2=b2β2=b2-aB1-a2B0
与(2-4-1)比较, 0 = b0 可知有: 整理: y a y a y + 1 + 2 = 0 u + (0 a1 + 1 )u + (0 a2 + a1 1 + 2 )u 0 a1 + 1 = b1 0 a2 + a1 1 + 2 = b2 1 = b1 − a1 0 2 = b2 − a1 1 − a2 0 y + a1 y + a2 y = b0 u + b1 u + b2 u (2-4-1) x 2 = y − 0 u − 1 u = −a2 ( y − 0 u)− a1 ( y − 0 u − 1 u)+ 2 u
所以新变量应取 y+a1y+a2y=bo+b1l+b2l2(2-4-1) x=y-,国=户-=1=x-B团 状态方程为 x=ax+ bu y=Cx+Du, 01 B= 2 C=[0],D=B
所以新变量应取, x 1 = y − 0 u x 2 = y − 0 u − 1 u 状态方程为 , 21 = xx x = x 1 − 1 u , 0 1 2 1 − − = a a A , 21 B = C = 1 0 , D = 0 y Cx Du , x Ax Bu = + = + y+ a1 y + a2 y = b0u+ b1u + b 2 u ( 2 - 4 - 1 )
推广到高阶系统。设系统的微分方程为: y+a v(n-1) ta (n-2) y+……+an-1y+mny bun)+,u(-+.+btbu (1)取状态变量 x,=y-Bou β0=bo 阝1=j-Bi-B1u β1=b1-a1B0 其中 阝2=b2-a1B1-a2B0 阝i-B1i-β2 B,=bu-aB y-Bou
推广到高阶系统。设系统的微分方程为: y a y a y a y a y n n n n n + + + + − + − − 1 ( 2) 2 ( 1) 1 ( ) (1)取状态变量 其中 = − − − = − − = − = 1 −1 0 2 2 1 1 2 0 1 1 1 0 0 0 n n n n b a a b a a b a b b u b u bn u bn u n n = + + + − + − 1 ( 1) 1 ( ) 0 x1 = y −0 u x2 = x 1 −1 u x3 = x 2 −2 u xn = x n−1 −n−1 u y u n u n n 1 ( 1) 0 ( 1) − − − = − − = y −0 u −1 u −2 u = y −0 u −1 u
(2)写成矩阵形式 x= Ax+ Bu y=Cx+ Du B 1 D=β0=b
(2)写成矩阵形式 y Cx Du x Ax Bu = + = + , 2 1 = n x x x X C = 1 0 0 , , 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 − − − = − a a a A n n , 2 1 = n B 0 0 D = = b