APPLIEDPHYSICS:TheCaseforPlasmonicsMark L.Brongersma,and VladimirM.Shalaev,2010PHzMetallicDielectricTHz-nanoplasmonicsphotonicsasueradoGHzSemiconductorMHz-ThepastelectronicskHz-10nm100nm1μm10um100um1mmCriticaldevicedimension(nm)Bysgueezinglightintonanoscalevolumes,plasmonicelementsallowforfundamental studiesof light-matterinteractions atlengthscalesthat wereotherwiseinaccessible27TheCaseforPlasmonicsMarkL.Brongersma,etal,VOL328,440SCIENCE,2010
27 APPLIED PHYSICS: The Case for Plasmonics Mark L. Brongersma, and Vladimir M. Shalaev, 2010 The Case for Plasmonics Mark L. Brongersma, et al, VOL 328,440 SCIENCE, 2010. By squeezing light into nanoscale volumes, plasmonic elements allow for fundamental studies of light-matter interactions at length scales that were otherwise inaccessible
hybridphotonicarchitecturesTheassemblyof hybridnanophotonicdevicesfromdifferentfundamentalphotonic entitiessuchas singlemoleculesnanocrystals,semiconductorquantumdots,nanowiresandmetalnanoparticlescanyieldfunctionalitiesthatexceedthoseof theindividualsubunitsBOX2BOXIPlasmonic enhancementCavityQEDaDielectricE.Metal28OliverBenson.nature,480.193(2011)
28 hybrid photonic architectures Oliver Benson, nature, 480, 193 (2011) The assembly of hybrid nanophotonic devices from different fundamental photonic entities—such as single molecules, nanocrystals, semiconductor quantum dots, nanowires and metal nanoparticles—can yield functionalities that exceed those of the individual subunits
FunctionalityonthenanoscaleLight guiding and sortingEnhancedemissionandabsorptionNonlinearelements and switchesNanophotonic-plasmonichybriddevicesPlasmonicallyenhanced single-photon sourcesNanowirephotonicelementsFutureprospectsplasmons.Also,nonlinear interactions facilitating logical operationsarefeasibleusingCQEDorplasmonic effects.Thereisgreatpotential29OliverBenson,nature,480,193(2011)
29 Oliver Benson, nature, 480, 193 (2011)
PlasmonicsGoesQuantumsingleplasmonAantibunching statisticsnanoscale-modevolumestrong couplingentangling+squeezing-Makeitquantum.Buildingblocksofaninteqratednanoscalequantuminformationystem.(A)Thenanowiresupportsasingleplasmonicoscilquantum informationlationconceptuallysimilartoasingle-modeopticalfiber.However,theleadtostrongcouplingwiththenanoscalemodevolumesoftheplasmonquantumplasmonicsquantumemitter.(B)Anunorthodoxapproachofenhancinglight-matterinteractionisbytailoringthedielectricconstantofamediumsothatitisdielectricinonedirectionandmetallicinanother.TheresultinghyperboSpaserloidaldispersionrelationsupportsinfinitelymanyelectromagneticstatesforchannelinglightintoasingle-photonresonanceconeCavity QEDAcombinedplasmonicsandmetamaterialsQI systemapproachmayallowlight-matterinteractiontobecontrolledatthesingle-photonlevel.30ZubinJacobandVladimirM.Shalaev,science,334,463(2011)
30 Plasmonics Goes Quantum Zubin Jacob and Vladimir M. Shalaev, science, 334, 463 (2011) single plasmon → antibunching statistics nanoscale-mode volume → strong coupling entangling+squeezing → quantum information quantum plasmonics → Spaser Cavity QED QI system
Unidirectional Chiral Proporgating SPPAnatolyV.Zayatsetal,2013ProgressworkAim to: the near-field interference of a circularly polarized dipoleresultsinthe unidirectional excitationofguided electromagneticmodes in the nearfield, with nopreferred far-field radiation directionmaxYIZH,(X,Z.t,)IAd1airNairdielectricairY/ZmetalSignificance:opensexcitingpossibilitiesfordirectionalswitching,polarization sorting,and processing of polarization-encodedinformation,including polarization-entangled optical qubits.QuantumspinHall effectof light(2015,science)31Near-Field InterferencefortheUnidirectional ExcitationofElectromagneticGuided ModesAnatolyV.Zayatsetal,Science/Vol340328|2013
31 Unidirectional Chiral Proporgating SPP Anatoly V. Zayats et al, 2013 Progress work Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes Anatoly V. Zayats et al, Science|Vol 340|328| 2013 Aim to: the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction Significance: opens exciting possibilities for directional switching, polarization sorting, and processing of polarization-encoded information, including polarization-entangled optical qubits. Quantum spin Hall effect of light (2015, science)