为了弄清学生的心理活动,老师应当回想他自己的经验,回顾他自己在解 题时碰到的困难与取得成功的经验。 我们当然知道,如果我们对该论题知识贫乏,是不容易产生好念头的。如 果我们完全没有知识,则根本不可能产生好念头。一个好念头的基础是过去的 经验和已有的知识。仅仅靠记忆不足以产生好念头。但若不重新收集一些有关 事实,则也不会出现好念头。只有材料还不足以盖房子,但是不收集必需的材 料也盖不了房子。解决数学问题所必需的材料是我们早已获得的数学知识的某 些有关内容,如以前解决的问题,以前证明过的定理。因此,以下列问题开始 工作常常是合适的:你知道一个与此有关的问题吗? 困难就在于:通常有相当多的问题与我们现在手上的问题有关,即,与它 有某种共同之处。我们怎样挑出其中一个或几个确实有用的问题呢?我们建议把 力量放在主要的共同之处上:看着未知数!试想起一个具有相同或相似未知数的 熟悉的问题来。 如果我们成功地回想起一个与当前问题密切相关的早已解决的问题,那是 很幸运的。我们应当争取这样的运气;通过探索我们是可以得到它的。这里 有个问题与你的问题有关,且早已解决,你能利用它吗? 上述问题,如能很好地理解和认真地加以考虑,常常有助于激发起一连串 正确的想法;但它们并不总是有用的,它们并非魔法。如果这些问题不行,我 们必须寻找某些其他的适当接触点,并且探索问题的各个方面;我们不得不变 化、变换、修改该问题。你能否重述这个问题?我们表中的某些问题提示了改变 问题的专门方法,例如普遍化、特殊化、应用类比、舍去一部分条件等等;具 体细节是重要的,但我们现在不能深入讨论。改变问题可能导致提出某种适当 的辅助问题:如果你不能解决所提出的问题,则应首先尝试去解决某些与此有 关的问题。 尝试去应用各种已知的问题或定理,考虑各种修改,对各种辅助问题进行 试验,我们可能离开原来的问题太远,甚至最后有失掉它的危险。但是还有 个很好的问题可以把我们带回原处:你是否利用了所有的已知数据?你是否利用 了整个条件? 0.例子 我们回到第8节中的例子。 “你是否知道一个与此有关的问题?” 看着未知数,你是否知道一个具有相同未知数的问题?” “好,未知数是什么?” “平行六面体的对角线。” “你是否知道任何具有相同未知数的问题?” 不,我们还没有任何关于平行六面体对角线的问题 你是否知道任何具有相似未知数的问题?
为了弄清学生的心理活动,老师应当回想他自己的经验,回顾他自己在解 题时碰到的困难与取得成功的经验。 我们当然知道,如果我们对该论题知识贫乏,是不容易产生好念头的。如 果我们完全没有知识,则根本不可能产生好念头。一个好念头的基础是过去的 经验和已有的知识。仅仅靠记忆不足以产生好念头。但若不重新收集一些有关 事实,则也不会出现好念头。只有材料还不足以盖房子,但是不收集必需的材 料也盖不了房子。解决数学问题所必需的材料是我们早已获得的数学知识的某 些有关内容,如以前解决的问题,以前证明过的定理。因此,以下列问题开始 工作常常是合适的:你知道一个与此有关的问题吗? 困难就在于:通常有相当多的问题与我们现在手上的问题有关,即,与它 有某种共同之处。我们怎样挑出其中一个或几个确实有用的问题呢?我们建议把 力量放在主要的共同之处上:看着未知数!试想起一个具有相同或相似未知数的 熟悉的问题来。 如果我们成功地回想起一个与当前问题密切相关的早已解决的问题,那是 很幸运的。我们应当争取这样的运气;通过探索我们是可以得到它的。 这里 有个问题与你的问题有关,且早已解决,你能利用它吗? 上述问题,如能很好地理解和认真地加以考虑,常常有助于激发起一连串 正确的想法;但它们并不总是有用的,它们并非魔法。如果这些问题不行,我 们必须寻找某些其他的适当接触点,并且探索问题的各个方面;我们不得不变 化、变换、修改该问题。你能否重述这个问题?我们表中的某些问题提示了改变 问题的专门方法,例如普遍化、特殊化、应用类比、舍去一部分条件等等;具 体细节是重要的,但我们现在不能深入讨论。改变问题可能导致提出某种适当 的辅助问题:如果你不能解决所提出的问题,则应首先尝试去解决某些与此有 关的问题。 尝试去应用各种已知的问题或定理,考虑各种修改,对各种辅助问题进行 试验,我们可能离开原来的问题太远,甚至最后有失掉它的危险。但是还有一 个很好的问题可以把我们带回原处:你是否利用了所有的已知数据?你是否利用 了整个条件? 10.例子 我们回到第8节中的例子。 “你是否知道一个与此有关的问题?” …… “看着未知数,你是否知道一个具有相同未知数的问题?” “好,未知数是什么?” “平行六面体的对角线。” “你是否知道任何具有相同未知数的问题?” “不,我们还没有任何关于平行六面体对角线的问题” “你是否知道任何具有相似未知数的问题?
你看,对角线是个线段,就是直线的一段。你从来没有解决过一个未知 数是直线长度的问题?” “当然,我们曾经解决过这样的问题,例如找出直角三角形的一个边。” 好啊!这里有一个知你的问题有关的问题,且早已解决,你能利用它 你真走运,你想起了一个与你当前问题有关的问题,而且这个问题你以 前已经解决了。你愿意利用它吗?为了能利用它,你能否引进某个辅助元素?” 图1 “看这里,你所想起的是一个关于三角形的问题。图中有三角形吗? 我们希望这最后的提示已明白得足以诱发出解题的思路(即引入一个在图 1中用阴影画出的直角三角形)。这个引入的直角三角形的斜边就是我们所要求 的对角线。但是教师应当对下述情况有所准备:即使这样明白的提示也不能使 学生开窍,那么他应当动用所有越来越明显的提示。 你是否想在图1中有个三角形?” “在图中,你想有哪种三角形?” 你现在还不能求出这对角线;但你说过你能求出三角形的一个边。那么 现在你该怎么办呢?” “如果对角线是三角形的一个边,你能找出它吗?” 经过或多或少的帮助后,学生终于成功地引进了决定性的辅助元素,即图 中阴影三角形,在鼓励学生进入实际计算之前,教师应确信其学生对问题的理 解已有足够的深度。 我想,画出那个三角形是个好主意,你现在有了个三角形,但是你是否 有未知数?” 未知数是三角形的斜边,我们可用毕达哥拉斯定理去计算它” 如果两边为已知,你会计算。但它们是已知的吗?
…… “你看,对角线是个线段,就是直线的一段。你从来没有解决过一个未知 数是直线长度的问题?” “当然,我们曾经解决过这样的问题,例如找出直角三角形的一个边。” “好啊! 这里有一个知你的问题有关的问题,且早已解决,你能利用它 吗?” “你真走运,你想起了一个与你当前问题有关的问题,而且这个问题你以 前已经解决了。你愿意利用它吗?为了能利用它,你能否引进某个辅助元素?” 图1 “看这里,你所想起的是一个关于三角形的问题。图中有三角形吗?” 我们希望这最后的提示已明白得足以诱发出解题的思路(即引入一个在图 1中用阴影画出的直角三角形)。这个引入的直角三角形的斜边就是我们所要求 的对角线。但是教师应当对下述情况有所准备:即使这样明白的提示也不能使 学生开窍,那么他应当动用所有越来越明显的提示。 “你是否想在图1中有个三角形?” “在图中,你想有哪种三角形?” “你现在还不能求出这对角线;但你说过你能求出三角形的一个边。那么 现在你该怎么办呢?” “如果对角线是三角形的一个边,你能找出它吗?” 经过或多或少的帮助后,学生终于成功地引进了决定性的辅助元素,即图 中阴影三角形,在鼓励学生进入实际计算之前,教师应确信其学生对问题的理 解已有足够的深度。 “我想,画出那个三角形是个好主意,你现在有了个三角形,但是你是否 有未知数?” “未知数是三角形的斜边,我们可用毕达哥拉斯定理去计算它” “如果两边为已知,你会计算。但它们是已知的吗?
“一个边已给定,是c。另一个边,我想也不难求出。是的,另一边是另 个直角三角形的斜边。” “很好!现在我看出你有个计划了。” 11.实现计划 想出一个计划,产生一个求解的念头是不容易的。要成功需要有许多条件 如已有的知识、良好的思维习惯、目标集中,还要有好运气。但实现计划则容 易得多,我们所需要的主要是耐心。 计划仅给出一个一般性的大纲,我们必须充实细节并耐心地检查每一个细 节,直到每一点都完全清楚了,没有任何可能隐藏错误的含糊之处为止。 如果学生真的拟定出一个计划,则教师就比较清闲了。现在的主要危险是 学生可能会忘记他的计划。因为那些从外界接受计划的和根据教师的权威来采 纳某个计划的学生,很容易发生这种现象;但若是学生自己搞出来的计划(即便 经过某种帮助)并且学生满意地看出了最终的思路,则他就不那么容易忘记。教 师必须坚持让学生检查每一步骤 根据“直观”或“形式”上的论证,我们可以使自己相信每一步骤的正确 性。我们可以集中力量在有问题的疑点上,直到完全搞清楚,毫不怀疑每一步 骤都是正确的为止;或者我们可以根据形式推理的法则推导出有问题的这一点 (在许多重要的场合,直接观察与形式证明二者间的区别是足够明显的;更进 步的讨论让我们留给哲学家们去进行吧!) 主要之点是:学生应当真正地相信每一步骤的正确性。在某些情况老师可 以强调“看出来”与“证明”二者之间的差别而提出:你能清楚地看出这一步 骤是正确的吗?同时你也能证明这一步骤是正确的吗? 12.例子 我们继续第10节末尾留下的工作。学生最后已经得到了解题的思路。他看 出未知数x是直角三角形的斜边,而给定的高度c是边长之一,另一边则是六面 体的一个面的对角线。很可能这刚学生被催促引入一个适当的符号。他应当选 择y表示另一边,即面上的对角线,其两边为a和b。学生现在可能看得更清楚 解题的思路就是应该引进一个辅助未知数y0最后,陆续对这两个直角三角形进 行考虑之后,他得到 X2=y+c y2=a2+b2于是消去辅助未知数y,从而有 x =a +b +c a2+b2+c2 如果学生正确地进行上述细节运算,老师没有理由去打断他,除非必要时 提醒他应当检查每一步。这样,教师可以问:
“一个边已给定,是c。另一个边,我想也不难求出。是的,另一边是另 一个直角三角形的斜边。” “很好!现在我看出你有个计划了。” 11.实现计划 想出一个计划,产生一个求解的念头是不容易的。要成功需要有许多条件, 如已有的知识、良好的思维习惯、目标集中,还要有好运气。但实现计划则容 易得多,我们所需要的主要是耐心。 计划仅给出一个一般性的大纲,我们必须充实细节并耐心地检查每一个细 节,直到每一点都完全清楚了,没有任何可能隐藏错误的含糊之处为止。 如果学生真的拟定出一个计划,则教师就比较清闲了。现在的主要危险是 学生可能会忘记他的计划。因为那些从外界接受计划的和根据教师的权威来采 纳某个计划的学生,很容易发生这种现象;但若是学生自己搞出来的计划(即便 经过某种帮助)并且学生满意地看出了最终的思路,则他就不那么容易忘记。教 师必须坚持让学生检查每一步骤。 根据“直观”或“形式”上的论证,我们可以使自己相信每一步骤的正确 性。我们可以集中力量在有问题的疑点上,直到完全搞清楚,毫不怀疑每一步 骤都是正确的为止;或者我们可以根据形式推理的法则推导出有问题的这一点 (在许多重要的场合,直接观察与形式证明二者间的区别是足够明显的;更进一 步的讨论让我们留给哲学家们去进行吧!) 主要之点是:学生应当真正地相信每一步骤的正确性。在某些情况老师可 以强调“看出来”与“证明”二者之间的差别而提出:你能清楚地看出这一步 骤是正确的吗?同时你也能证明这一步骤是正确的吗? 12.例子 我们继续第10节末尾留下的工作。学生最后已经得到了解题的思路。他看 出未知数x是直角三角形的斜边,而给定的高度c是边长之一,另一边则是六面 体的一个面的对角线。很可能这刚学生被催促引入一个适当的符号。他应当选 择y表示另一边,即面上的对角线,其两边为a和b。学生现在可能看得更清楚: 解题的思路就是应该引进一个辅助未知数y0最后,陆续对这两个直角三角形进 行考虑之后,他得到 x2=y 2 +c2 y 2 =a 2 +b2于是消去辅助未知数y,从而有 x2=a 2 +b2 +c2 x= 2 2 2 a + b + c 如果学生正确地进行上述细节运算,老师没有理由去打断他,除非必要时 提醒他应当检查每一步。这样,教师可以问:
“你能清楚地看出具有三边x,y,c的三角形是直角三角形吗?” 对于这个问题,学生可能老老实实回答:“是”。但是如果老师不满足于 学生的直观猜测,他应该继续提问 但是你能证明这个三角形是个直角三角形吗?” 除非整个班级对于立体几何已经有了良好的起点,否则教师不应当提出这 个问题。即使如此,也仍然存在某些危险性,即对这个偶然提出问题的回答可 能成为大多数学生的主要困难。 13.回顾 即使是相当好的学生,当他得到问题的解答,并且很干净利落地写下论证 后,就会合上书本,找点别的事来干干。这样做,他们就错过了解题的一个重 要而有教益的方面。通过回顾所完成的解答,通过重新考虑与重新检查这个结 果和得出这一结果的路子,学生们可以巩固他们的知识和发展他们解题的能力。 一个好的教师应该懂得并且传授给学生下述看法:没有任何问题是可以解决得 十全十美的。总剩下些工作要做。经过充分的探讨与钴研,我们能够改进这个 解答,而且在任何情况下,我们总能提高自己对这个解答的理解水平 现在学生已经完成了他的计划。他已经写出了答案,检査了每一步。这样, 他似乎有充分理由相信他的解答是正确的了。然而,出现错误总还是可能的, 特别当论证冗长而复杂的时候更是如此。所以要验证。特别是,如果有某种快 速而直观的办法来检验结果或者检验论证,决不要忽略。你能检验这结果吗? 你能检验这个论证吗? 为了确信某个东西的存在或其质量的好坏,我们总喜欢去看看它,摸摸它。 我们总是通过两种不同的感官来感知它。同样,我们也宁可通过两种不同的证 明使我们对结果确信无疑。因此要问:你能用不同方法来导出这结果吗?当然 我们宁愿要简短而直观的论证,而不要冗长而烦琐的,所以要问:你能一下子 看出它吗? 教师的首要职责之一是不要给学生以下述错觉:数学题目之间很少有联 系,和任何其他事物则完全没有什么联系。当我们回顾问题解答的时候,我们 自然有机会来考察一个问题与其它事物的联系。如果学生已经作出了真诚的努 力并且意识到自己完成得不错,那末他们将发现对解答加以回顾确实饶有趣味 这样,他们就热切地想知道用真诚的努力还可干些什么别的,以及下次他如何 能干得同样好。教师应该鼓励学生设想一些情况,在那些情况下,他能再一次 利用所使用的办法,或者应用所得到的结果。你能把这结果或这方法用于某个 其它问题吗? 14.例子 在第12节,学生最后得到了解答:如果长方体自同一角引出的三个边为 b,c,那末对角线为 la2+b2+c
“你能清楚地看出具有三边x,y,c的三角形是直角三角形吗?” 对于这个问题,学生可能老老实实回答:“是”。但是如果老师不满足于 学生的直观猜测,他应该继续提问: “但是你能证明这个三角形是个直角三角形吗?” 除非整个班级对于立体几何已经有了良好的起点,否则教师不应当提出这 个问题。即使如此,也仍然存在某些危险性,即对这个偶然提出问题的回答可 能成为大多数学生的主要困难。 13.回顾 即使是相当好的学生,当他得到问题的解答,并且很干净利落地写下论证 后,就会合上书本,找点别的事来干干。这样做,他们就错过了解题的一个重 要而有教益的方面。通过回顾所完成的解答,通过重新考虑与重新检查这个结 果和得出这一结果的路子,学生们可以巩固他们的知识和发展他们解题的能力。 一个好的教师应该懂得并且传授给学生下述看法:没有任何问题是可以解决得 十全十美的。总剩下些工作要做。经过充分的探讨与钻研,我们能够改进这个 解答,而且在任何情况下,我们总能提高自己对这个解答的理解水平。 现在学生已经完成了他的计划。他已经写出了答案,检查了每一步。这样, 他似乎有充分理由相信他的解答是正确的了。然而,出现错误总还是可能的, 特别当论证冗长而复杂的时候更是如此。所以要验证。特别是,如果有某种快 速而直观的办法来检验结果或者检验论证,决不要忽略。你能检验这结果吗? 你能检验这个论证吗? 为了确信某个东西的存在或其质量的好坏,我们总喜欢去看看它,摸摸它。 我们总是通过两种不同的感官来感知它。同样,我们也宁可通过两种不同的证 明使我们对结果确信无疑。因此要问:你能用不同方法来导出这结果吗?当然, 我们宁愿要简短而直观的论证,而不要冗长而烦琐的,所以要问:你能一下子 看出它吗? 教师的首要职责之一是不要给学生以下述错觉:数学题目之间很少有联 系,和任何其他事物则完全没有什么联系。当我们回顾问题解答的时候,我们 自然有机会来考察一个问题与其它事物的联系。如果学生已经作出了真诚的努 力并且意识到自己完成得不错,那末他们将发现对解答加以回顾确实饶有趣味。 这样,他们就热切地想知道用真诚的努力还可干些什么别的,以及下次他如何 能干得同样好。教师应该鼓励学生设想一些情况,在那些情况下,他能再一次 利用所使用的办法,或者应用所得到的结果。你能把这结果或这方法用于某个 其它问题吗? 14.例子 在第12节,学生最后得到了解答:如果长方体自同一角引出的三个边为a, b,c,那末对角线为 2 2 2 a + b + c
你能检验这个结果吗?教师不能指望从缺乏经验的学生那里得到这个问题 的良好回答。但是学生应该很早就获得下述经验:用字母表达的问题比纯粹数 字题好。对于用字母表示的题,其结果很容易进行几次检验,而用数字表示的 题则不然。我们的例子虽然很简单,也足以证明这点。教师可以对结果提出好 几个问题,对这些问题,学生可以很容易地回答“是”;但如回答“不是” 这将表明结果中存在严重的缺点 你是否使用了所有的数据?是否所有数据a,b,c都在你的对角线公式中 出现?” “长、宽、高在我们的问题中起的作用是一样的,我们的问题对a,b,c 来说是对称的。你所得的公式对a,b,c对称吗?当a,b,c互换时公式是否保持 不变 “我们的问题是一个立体几何问题给定尺寸a,b,c,求平行六面体的对 角线。我们的问题与平面几何的问题类似:给定尺寸a、b,求矩形的对角线 这里立体几何问题的结果是否与平面几何的结果类似?” “如果高c减小,并且最后等于零,这时平行六面体变成平行四边形。在 你的公式中,令c=0,是否得到矩形对角线的正确公式?” 如果高c增加,则对角线也增加。你的公式是否表明这点?” “如果平行六面体的三个量度a,b,c按同一比例增加,则对角线也按同 比例增加。在你的公式中,如将a,b,c分别代以12a,12b,12c,则对角线 也将乘以12,是否这样?” “如果a,b,c的单位是尺,则你的公式给出的对角线的单位也是尺;如 果将所有单位改为寸,则公式应保持正确,是否如此?” (后两个问题基本上是等价的。参见“量纲检验”一节) 上述一些问题有几个好处。首先,公式通过这么多的检验,这一事实不能 不使一个聪明的学生产生深刻的印象。学生以前就相信公式是正确的,因为公 式是他仔细推导出来的。但是现在经过这么多检验,他就更深信无疑了,这种 信心的增加来源于一种“实验的数据”。正是由于上述问题,公式的细节获得 了新的意义,而且和不同的事实联系起来了。这样,公式就更容易记住,学生 的知识得以巩固。最后,上述问题很容易转到类似的题目上。对于类似题目获 得一些经验以后,一个聪明的学生就能觉察出所包含的普遍概念:即,利用所 有有关数据,改变数据,对称,类比。如果他养成了把注意力集中在这些地方 的习惯,他解题的能力肯定会提高。 你能检验这个论证吗?在困难而重要的场合,可能需要逐步地重新检验论 证。但通常,重新检査一下令人恼火之点就够了。在本例,可以建议讨论以前 提过的问题:你能证明具有三边x,y,c的三角形是直角三角形吗(见第12节末
你能检验这个结果吗?教师不能指望从缺乏经验的学生那里得到这个问题 的良好回答。但是学生应该很早就获得下述经验:用字母表达的问题比纯粹数 字题好。对于用字母表示的题,其结果很容易进行几次检验,而用数字表示的 题则不然。我们的例子虽然很简单,也足以证明这点。教师可以对结果提出好 几个问题,对这些问题,学生可以很容易地回答“是”;但如回答“不是”, 这将表明结果中存在严重的缺点。 “你是否使用了所有的数据?是否所有数据a,b,c都在你的对角线公式中 出现?” “长、宽、高在我们的问题中起的作用是一样的,我们的问题对a,b,c 来说是对称的。你所得的公式对a,b,c对称吗?当a,b,c互换时公式是否保持 不变?” “我们的问题是一个立体几何问题给定尺寸a,b,c,求平行六面体的对 角线。我们的问题与平面几何的问题类似:给定尺寸a、b,求矩形的对角线, 这里立体几何问题的结果是否与平面几何的结果类似?” “如果高c减小,并且最后等于零,这时平行六面体变成平行四边形。在 你的公式中,令c=0,是否得到矩形对角线的正确公式?” “如果高c增加,则对角线也增加。你的公式是否表明这点?” “如果平行六面体的三个量度a,b,c按同一比例增加,则对角线也按同 一比例增加。在你的公式中,如将a,b,c分别代以12a,12b,12c,则对角线 也将乘以12,是否这样?” “如果a,b,c的单位是尺,则你的公式给出的对角线的单位也是尺;如 果将所有单位改为寸,则公式应保持正确,是否如此?” (后两个问题基本上是等价的。参见“量纲检验”一节) 上述一些问题有几个好处。首先,公式通过这么多的检验,这一事实不能 不使一个聪明的学生产生深刻的印象。学生以前就相信公式是正确的,因为公 式是他仔细推导出来的。但是现在经过这么多检验,他就更深信无疑了,这种 信心的增加来源于一种“实验的数据”。正是由于上述问题,公式的细节获得 了新的意义,而且和不同的事实联系起来了。这样,公式就更容易记住,学生 的知识得以巩固。最后,上述问题很容易转到类似的题目上。对于类似题目获 得一些经验以后,一个聪明的学生就能觉察出所包含的普遍概念:即,利用所 有有关数据,改变数据,对称,类比。如果他养成了把注意力集中在这些地方 的习惯,他解题的能力肯定会提高。 你能检验这个论证吗?在困难而重要的场合,可能需要逐步地重新检验论 证。但通常,重新检查一下令人恼火之点就够了。在本例,可以建议讨论以前 提过的问题:你能证明具有三边x,y,c的三角形是直角三角形吗(见第12节末