该问题可以用拉格朗日系数法求解,其函数如下 nP()=7ln7-7∑∑( t.Int. -t)+∑∑nnpn +∑C∑(Pan-x2)+v(T-∑∑ 11.19) 令7n010v得
该问题可以用拉格朗日系数法求解,其函数如下: = − − − + j j i j i j i i j i j i j i ln P(t i j) T lnT T (t lnt t ) t ln p + − + − j j i j i i j a i j a a i a ( (t p x ) (T t * , ) (11.19) 令 = 0 = = = L L t L T L i j a 得
OL nt-1+np+∑npa-V=0 Vi∈g 11.20 OL =Int-1 0 OT 11.21) aL ∑∑nP2 a∥=x=0,Va∈A (11.22) OL =T 0 (11.23)
= − ln −1+ ln + , − = 0 a ij ij a a ij ij t p p t L ,ij (11.20) = ln −1− = 0 T T L (11.21) t p x a A L j ij a ij a a i = − = 0, * , (11.22) = − =0 j ij i T t L (11.23)
将(1.21)式改变形式后,代入(7.20)式整理后得, 增lnT-lnt+nP+∑ 0 a∈A (11.24 =exp(InTInPu+napa=0 a∈A (11.25) 7p,eXp(∑nP a∈A 11.26)
将(11.21)式改变形式后,代入(7.20)式整理后得, − + + = a A i j pi j a pa i j lnT ln t ln , 0 (11.24) = + + = a A ij T pij a pa ij t exp(ln ln , 0 (11.25) = a A i j Tpi j a pa i j t exp( ) , (11.26)