1)Bn()4Bm() 对基本单元 fm(n)=fm-i(n)+km8m-(n-1) z变换,得 8m (n)=k fm-1(n)+8m-1(n-1) F m1(=)+kn= F / F Gn(=)=knFn1(x)+n-(=) /G B B z+K Z Bn(=)=knBn1(=)+Bn(=)(2) Bn1()=Bn(2)- Ek B1(=)(3)
1 1 1 1 1 1 m m m m m m m m F z F z k z G z G z k F z z G z B m m 1 z B z 1) 0 0 / / F G 1 1 1 1 1 1 1 2 m m m m m m m m B z B z k z B z B z k B z z B z Bm1 z zBm z zkm Bm1 z 3 z 变换,得 1 1 1 1 1 1 m m m m m m m m f n f n k g n g n k f n g n 对基本单元
Bn(=)=Bn1(=)+kmBn1(=)(1) Bm(=)=kmBm-(= Bn1(-)=Bn(=) Ek B1(=)(3) (3)代入(1)得(4) Bn()=12[Bn()-knBn()(4) (4)代入(3)得: B -zkm Bn()2Bm ()
(3)代入(1)得(4) 1 2 1 4 1 m m m m m B z B z k B z k 1 1 1 1 1 1 1 2 m m m m m m m m B z B z k z B z B z k B z z B z Bm1 z zBm z zkm Bm1 z 3 (4)代入(3) 得: 1 2 1 1 m m m m m B z zk B z zB z k
B(=)=B(=)=1 由(1)、(2) Bn(=)=Bn1(=)+kn=Bn1(=)(1) 1,(2)=k,Bn(2)+=n(=)(2) B(=)=B(=)+k=B(=)=1+k2 1区()=kB1+=2()=k+ →B()=-B(=) ∫B2()=B1()+k=()=1+k=+k=+k=2 B2(=)=k2B(=)+B1(=)=k2+kk2+k2x+ →B B
0 0 B z B z 1 1 1 B1 1 z z B z 1 1 1 0 1 0 1 1 1 1 1 0 0 1 B z B z k z B z 1 k z B z k B z B z k z 由(1)、(2) 1 1 1 1 1 1 1 2 m m m m m m m m B z B z k z B z B z k B z z B z 1 1 1 2 2 1 2 1 1 1 2 2 1 1 1 2 2 2 1 1 2 1 2 2 B z B z k z B z 1 k z k k z k z B z k B z z B z k k k z k z z 2 1 B2 2 z z B z
En(=)=-Bn(=) 代入(1)、( Bn(=)=Bn1()+km=Bn1(=)() Bn()=1[Bn()-k( 得 Bn(=)=Bn1(=)+kn=Bm1(=-) Bn1(=) 1-k2 Bm(=)-kn2mBn(=)
1 1 1 1 1 2 5 1 6 1 m m m m m m m m m m m B z B z k z B z B z B z k z B z k m 1 B m m z z B z 代入 (1)、(4) 1 1 1 1 Bm m m m z B z k z B z 1 2 1 4 1 m m m m m B z B z k B z k 得