《随机过程》 第4章小结 陈明制作 chenming@seu.edu.cn
《随机过程》 第4章小结 陈明 制作 chenming@seu.edu.cn
知识要点 随机信号通过线性系统的表示 ·随机信号的功率谱密度 ·随机信号通过线性系统的统计性质 随机信号通过非线性系统
知识要点 • 随机信号通过线性系统的表示 • 随机信号的功率谱密度 • 随机信号通过线性系统的统计性质 • 随机信号通过非线性系统
随机信号通过线性系统的表示 随机变量的无穷和 随机序列通过离散时间线性系统的表示 连续时间随机过程的微积分 ·随机过程通过连续时间线性系统的表示 由差分方差和微分方程定义的线性系统
随机信号通过线性系统的表示 • 随机变量的无穷和 • 随机序列通过离散时间线性系统的表示 • 连续时间随机过程的微积分 • 随机过程通过连续时间线性系统的表示 • 由差分方差和微分方程定义的线性系统
阶矩空间上的距离 通过内积得到距离的定义 均方收敛 (X,Y)=EIXY) d(X,Y)=√(X-Y,X-Y
二阶矩空间上的距离 • 通过内积得到距离的定义 • 均方收敛
性质4.1若 ms lim X=X, ms lim y=Y,则 n→ n→∞ 1. lim E(Xn=Ems lim Xn=EXI n→ n→ 2.limE{|Xn}2}=E{X|2}; n→ 3. lim EXmYn=EiXY; m,n→ 4. ms lim(aXn+bYn=ax+b n→。o 5.(均方极限的惟一性)若 ms lim Xn=Y,则P{X=Y}=1; n2→∞ 6.(均方收敛的 Cauchy准则)Xn均方收敛,当且仅当Xn为 Cauchy 序列,也即limE{|Xm-Xn2}=0; m,n→∞ 7.( Loeve准则)Xn均方收敛,当且仅当序列Xn的自相关函 数Rx{n1,m2]满足 lim Rx1, m2=C (4.5) 其中C为常数