教学检测卷 、选择题(每小题3分,共18分) 1.(3分)在下列现象中,属于平移的是() A.小亮荡秋千运动 B.电梯由一楼升到八楼 C.导弹击中目标后爆炸D.卫星绕地球运动 2.(3分)下列图形中∠1与∠2是同位角的是( 3.(3分)下列长度的三根木棒首尾相接,不能做成三角形框架的是() B.7cm、13cm C.5cm、7cm、11cm D.5cm、10cm、 4.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2 的度数是( A.15°B. C.30°D.3 5.(3分)如图所示,分别以n边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为 A B. 2n C. rcn D. nrcm 6.(3分)下列命题中,真命题的个数是() ①若x≠0,则x2>0; ②如果两个角互补,那么这两个角一个是锐角一个是钝角
数学检测卷 一、选择题(每小题 3 分,共 18 分) 1.(3 分)在下列现象中,属于平移的是( ) A.小亮荡秋千运动 B.电梯由一楼升到八楼 C.导弹击中目标后爆炸 D.卫星绕地球运动 2.(3 分)下列图形中∠1 与∠2 是同位角的是( ) A. B. C. D. 3.(3 分)下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A.5cm、7cm、2cm B.7cm、13cm、10cm C.5cm、7cm、11cm D.5cm、10cm、13cm 4.(3 分)如图,把一块含有 45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2 的度数是( ) A.15° B.25° C.30° D.35° 5.(3 分)如图所示,分别以 n 边形的顶点为圆心,以 1cm 为半径画圆,则图中阴影部分的面积之和为( ) A.πcm2 B.2πcm2 C.4πcm2 D.nπcm2 6.(3 分)下列命题中,真命题的个数是( ) ①若 x≠0,则 x 2>0; ②如果两个角互补,那么这两个角一个是锐角一个是钝角;
③一个角的补角大于这个角 ④两条直线被第三条直线所截,同位角相等 A.1B.2C.3D.4 二、填空题(每小题3分,共10分) 7.(3分)已知某种植物花粉的直径为000035cm,将数据0.00035用科学记数法表示为 8.(3分)命题“互为相反数的两个数的和为0”的逆命题为 9.(3分)如图,一把直尺沿直线断开并错位,点E、D、B、F在同一直线上,若∠ADE=145°,则∠DBC 的度数为 10.(3分)一个多边形所有内角都是135°,则这个多边形的边数为 11.(3分)一个正多边形的每个外角都是36,这个正多边形的边数是 12.(3分)如图,∠1=70°,∠2=130°,直线m平移后得到直线n,则∠3= 13.(3分)一个三角形的两边长分别是2和6,第三边长为偶数,则第三边长为 14.(3分)如图是一块从一个边长为50cm的正方形材料中剪出的垫片,现测得FG=8cm,则这个剪出的图 形的周长是 15.(3分)如图,直线a∥b,AC⊥BC,∠C=90°,则∠a
③一个角的补角大于这个角; ④两条直线被第三条直线所截,同位角相等. A.1 B.2 C.3 D.4 二、填空题(每小题 3 分,共 10 分) 7.(3 分)已知某种植物花粉的直径为 0.00035cm,将数据 0.00035 用科学记数法表示为 . 8.(3 分)命题“互为相反数的两个数的和为 0”的逆命题为 . 9.(3 分)如图,一把直尺沿直线断开并错位,点 E、D、B、F 在同一直线上,若∠ADE=145°,则∠DBC 的度数为 . 10.(3 分)一个多边形所有内角都是 135°,则这个多边形的边数为 . 11.(3 分)一个正多边形的每个外角都是 36°,这个正多边形的边数是 . 12.(3 分)如图,∠1=70°,∠2=130°,直线 m 平移后得到直线 n,则∠3= . 13.(3 分)一个三角形的两边长分别是 2 和 6,第三边长为偶数,则第三边长为 . 14.(3 分)如图是一块从一个边长为 50cm 的正方形材料中剪出的垫片,现测得 FG=8cm,则这个剪出的图 形的周长是 cm. 15.(3 分)如图,直线 a∥b,AC⊥BC,∠C=90°,则∠α= .
6.(3分)如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中 的∠CFE的度数是 E 图 解答题(共52分) 17.(8分)计算 8.(5分)先化简,再求值:a·(-b)+(--ab2)3,其中a=-,b=4
16.(3 分)如图 a 是长方形纸带,∠DEF=25°,将纸带沿 EF 折叠成图 b,再沿 BF 折叠成图 c,则图 c 中 的∠CFE 的度数是 °. 三、解答题(共 52 分) 17.(8 分)计算: (1)(x 2 •x m)3÷x 2m (2)(π﹣3.14)0﹣( 1 2 )﹣2+( 1 3 )2012×(﹣3)2012. 18.(5 分)先化简,再求值:a 3 •(﹣b 3)+(﹣ 1 2 ab2)3,其中 a= 1 4 ,b=4.
19.(7分)如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再 向上平移3格,得到△A'B"C (1)请在图中画出平移后的△ABC (2)若连接BB,CC’,则这两条线段的关系是 (3)△ABC在整个平移过程中线段AB扫过的面积为 ………小J.1-4 r…} 20.(6分)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式) 如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF AB∥CD,(已知) ∠ ,(已知) ∴∠EBC=∠ABC,(角的平分线定义 同理,∠FCB ∠EBC=∠FCB.(等式性质) BE∥CF
19.(7 分)如图,网格中每个小正方形边长为 1,△ABC 的顶点都在格点上.将△ABC 向左平移 2 格,再 向上平移 3 格,得到△A′B′C′. (1)请在图中画出平移后的△A′B′C′; (2)若连接 BB′,CC′,则这两条线段的关系是 ; (3)△ABC 在整个平移过程中线段 AB 扫过的面积为 . 20.(6 分)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式) 如图,已知 AB∥CD,BE、CF 分别平分∠ABC 和∠DCB,求证:BE∥CF. 证明: ∵AB∥CD,(已知) ∴∠ =∠ .( ) ∵ ,(已知) ∴∠EBC= 1 2 ∠ABC,(角的平分线定义) 同理,∠FCB= . ∴∠EBC=∠FCB.(等式性质) ∴BE∥CF.( )
21.(8分)如图,∠A=∠F,∠C=∠D,判断BD与CE的位置关系,并说明理由 (8分)已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90 (1)求证:AB∥CD; (2)试探究∠2与∠3的数量关系 B 3.(10分)如图,∠ACD是△ABC的外角,∠ABC与∠ACD的角平分线交于点O (1)若∠ABC=66°,∠ACB=34°,则∠A= ∠O= (2)探索∠A与∠O的数量关系,并说明理由; (3)若AB∥CO,AC⊥BO,求∠ACB的度数
21.(8 分)如图,∠A=∠F,∠C=∠D,判断 BD 与 CE 的位置关系,并说明理由. 22.(8 分)已知:如图所示,∠ABD 和∠BDC 的平分线交于 E,BE 交 CD 于点 F,∠1+∠2=90°. (1)求证:AB∥CD; (2)试探究∠2 与∠3 的数量关系. 23.(10 分)如图,∠ACD 是△ABC 的外角,∠ABC 与∠ACD 的角平分线交于点 O. (1)若∠ABC=66°,∠ACB=34°,则∠A= °,∠O= °; (2)探索∠A 与∠O 的数量关系,并说明理由; (3)若 AB∥CO,AC⊥BO,求∠ACB 的度数.