第六章二阶常微分方程 的幂级数解法 说明 ★本章计划讲授学时:4 ★§6.5为教学叁考资料,不讲授
✁ F ✂✄☎✆✝✞ ✟✠✡ 4 F §6.5 ☛☞✟✌✍✎ ✏ ✑✒✝✞
喜六章二阶线性常微分方程的级数解法 第六章二阶线性常微分方程的幂级数解法 §6.1二阶线性常微分方程的常点和奇点 二阶线性齐次常微分方程的标准形式 d2z +p(a)dz+()w=0, (6.1) p(2)和q(2)称为方程的系数 方程的解是完全由方程的系数决定的 特别是,方程解的解析性是完全由方程系数的解析性决定的 用级数解法解常嶶分方程时,得到的解总是某一指定点、∂的邻堿內收敛的无穷级数 方程糸数p(z),q(x)在如0点的解析性就决定了级数解在0点的解析性,或者说,就决定 了级数解的形式,例如,是 Taylor级数还是 Laurent级数 如果p(z),q(2)在0点解析,则20点称为方程的常点 如果p(z),q(2)中至少有一个在z0点不解析,则20点称为方程的奇点 例61超几何方程( Hypergeometric equation) (1-2),2+[-(1+a+)2] 的系数是 p(2)=2-(1 1+a+ 2(1-2) 和q(2)= 在有限远处,p(2)和q(2)有两个奇点:z=0和z=1.所以,除了z=0和z=1是超几何方程 的奇点外,有限远处的其他点都是方程的常点 例62 Legendre方程 dy 2x+l(1+1)y=0 在有限远处的奇点为x=±1 要判断无穷远点z=∞0是不是方程(6.1)的奇点,则必须作自变量的变换z=1/t d2÷qm 因此,方程(6.1)变为 如果t=0是方程(6.2)的常点(奇点),则称无穷远点z=∞0是方程(6.1)的常点(奇点)
✁✂ ✄☎✆✝✞✟✠✡☛☞✌✍✎✏✑ ✒ 1 ✓ ✔✕✖ ✗✘✙✚✛✜✢✣✤✥✦✧★✩✪ §6.1 ✫✬✭✮✯✰✱✲✳✴✯✵✶✷✵ ✸✹✺✻✼✽✾✿❀❁❂❃❄❅❆❇ d 2w dz 2 + p(z) dw dz + q(z)w = 0, (6.1) p(z) ❈ q(z) ❉❊❋●❍■❏❑ • ❋●❍▲▼◆❖ P❋●❍■❏◗❘❍❑ • ❙❚▼❯❋●▲❍▲❱❲▼◆❖ P❋●■❏❍▲❱❲◗❘❍❑ ❳❨❩❬❭❬❪❫❴❵❛❜❯ ❝❞❡❬❢❣ ❤✐❥❦❧ z0 ❡♠♥ ♦♣q❡rs❨❩❑ ❵❛ t❩ p(z), q(z) ✉ z0 ❧❡❬✈✇①②❦ ③❨❩❬✉ z0 ❧❡❬✈✇❯ ④⑤⑥❯①②❦ ③❨❩❬❡⑦⑧❯⑨⑩❯❣ Taylor ❨❩❶❣ Laurent ❨❩❑ • ❷❸ p(z), q(z) ❹ z0 ❺▲❱❯❻ z0 ❺❉❊❋●❍❼❺❑ • ❷❸ p(z), q(z) ❽❾❿➀➁➂❹ z0 ❺➃▲❱❯❻ z0 ❺❉❊❋●❍➄❺❑ ➅ 6.1 ➆➇➈❋● (Hypergeometric equation) z(1 − z) d 2w dz 2 + γ − (1 + α + β)z dw dz − αβw = 0 ❍■❏▼ p(z) = γ − (1 + α + β)z z(1 − z) ❈ q(z) = − αβ z(1 − z) . ❹➀➉➊➋❯ p(z) ❈ q(z) ➀➌➂➄❺➍ z = 0 ❈ z = 1 ❑➎➏❯➐➑ z = 0 ❈ z = 1 ▼➆➇➈❋● ❍➄❺➒❯➀➉➊➋❍➓➔❺→▼❋●❍❼❺❑ ➅ 6.2 Legendre ❋● 1 − x 2 d 2y dx 2 − 2x dy dx + l(l + 1)y = 0, ❹➀➉➊➋❍➄❺❊ x = ±1 ❑ ➣↔↕➙➛➊❺ z = ∞ ▼➃▼❋● (6.1) ❍➄❺❯❻➜➝➞ ➟ ➠➡❍ ➠➢ z = 1/t ❑ dw dz = −t 2 dw dt , d 2w dz 2 = t 4 d 2w dt 2 + 2t 3 dw dt . ➤➥❯❋● (6.1) ➠ ❊ d 2w dt 2 + 2 t − 1 t 2 p 1 t dw dt + 1 t 4 q 1 t w = 0. (6.2) ❷❸ t = 0 ▼❋● (6.2) ❍❼❺ (➄❺) ❯❻❉➙➛➊❺ z = ∞ ▼❋● (6.1) ❍❼❺ (➄❺) ❑
点和奇 不页 0(即z=∞)为方程常点的条件是 即 2) =+一 无穷远点是超几何方程和 Legendre方程的奇点
§6.1 ✄☎✆✝✞✟✠✡☛☞✞➦➧➨➦ ✒ 2 ✓ t = 0 (➩ z = ∞) ❊❋●❼❺❍➫➭▼ p 1t = 2t + a2t2 + a3t3 + · · · , q 1t = b4t4 + b5t5 + · · · , ➩ p(z) = 2z + a2 z2 + a3 z3 + · · · , q(z) = b4z4 + b5z5 + · · · . ➙➛➊❺▼➆➇➈❋●❈ Legendre ❋●❍➄❺❑
线性常微分方程的幂级数解 86.2方程常点邻域内的解 首先,不加证明地介绍下面的定理 定理61如果p(2)和q(z)在圆|z-=0<R内单值解析,则在此圆内常微分方程初值问题 du az+p(2)2+q(=0 (co,c1为任意常数) 有唯一的一个解(2),并且m(2)在这个圆内单值解析 根据这个定理,可以把w(2)在20点的邻域|2-20<R内展开为 Taylor级数 (2)=∑(2-20) 显然,这里(2-20)0与(z-20)1的系数c与c1正好和初值条件一致 将这个形式的级数解代入微分方程,比较系数,就可以求出系数∝k.定理说明,系数 (k=2,3,…均可用co,cn表示 例6.3求 Legendre方程 (1 dx2 (+1)y=0 在x=0点邻域内的解,其中l是一个参数 解x=0是方程的常点,因此,可令解 代入方程,就有 (1-2)∑ck(k-1) l(l+1) 整理合并,得到 ∑{k+2(k+1/+2-[(+1)-1(+1]4} 根据 Taylor展开的唯一性,可得 (k+2)(k+1)ck+2-[(k+1)-l(l+1)ck=0 k(k+1)-l(+1)(k-1)( k+2 k+2)(k+1 k+2)(k+1)k
✁✂ ✄☎✆✝✞✟✠✡☛☞✌✍✎✏✑ ✒ 3 ✓ §6.2 ❁❂✾➯➲➳➵❃➸ ➺➻❯➃➼➽ ➾➚➪➶➹➘❍❘➴❑ ➷➬ 6.1 ❷❸ p(z) ❈ q(z) ❹ ➮ |z − z0| < R ➱✃❐▲❱❯❻❹➥ ➮➱❼❒❮❋●❰❐ÏÐ d 2w dz 2 + p(z) dw dz + q(z)w = 0, w(z0) = c0, w0 (z0) = c1 (c0, c1 ❊ÑÒ❼❏) ➀Ó➁❍➁➂▲ w(z) ❯ÔÕ w(z) ❹Ö➂ ➮➱✃❐▲❱❑ רÖ➂❘➴❯Ù➏Ú w(z) ❹ z0 ❺❍ÛÜ |z − z0| < R ➱ÝÞ❊ Taylor ß❏ w(z) = X∞ k=0 ck(z − z0) k . àá❯Öâ (z − z0) 0 ã (z − z0) 1 ❍■❏ c0 ã c1 äå❈❰❐➫➭➁æ❑ ç Ö➂èé❍ß❏▲êë❒❮❋●❯ìí■❏❯îÙ➏ïð■❏ ck ❑❘➴ñ ➾❯■❏ ck(k = 2, 3, · · ·) òÙó c0, c1 ôõ❑ ➅ 6.3 ï Legendre ❋● 1 − x 2 d 2y dx 2 − 2x dy dx + l(l + 1)y = 0 ❹ x = 0 ❺ÛÜ ➱❍▲❯➓ ❽ l ▼➁➂ö❏❑ ➸ x = 0 ▼❋●❍❼❺❯ ➤➥❯Ù÷▲ y = X∞ k=0 ckx k . êë❋●❯î➀ 1 − x 2 X∞ k=0 ckk(k − 1)x k−2 − 2x X∞ k=0 ckkxk−1 + l(l + 1)X∞ k=0 ckx k = 0, ø ➴ùÔ❯úû X∞ k=0 n (k + 2)(k + 1)ck+2 − k(k + 1) − l(l + 1) ck o x k = 0. ר Taylor ÝÞ❍Ó➁❲❯Ùú (k + 2)(k + 1)ck+2 − [k(k + 1) − l(l + 1)] ck = 0, ➩ ck+2 = k(k + 1) − l(l + 1) (k + 2)(k + 1) ck = (k − l)(k + l + 1) (k + 2)(k + 1) ck.
这样就得到了系数之间的递推关系.反复利用递推关系,就可以求得系数 n-l-2)(2n+l-1) n-l-2)(2n-l-4)(2n+l-1)(2n+l-3) 2n(2n-1)(2n-2)(2n-3) (2n+l-1)(2n+l-3)…(+1), 1)(2n+l) C2n+1 (2n+1)(2n) (2n-l-1)(2n-l-3)(2n+l)(2n+l-2) (2n+1)(2m)(2n-1)(2n-2) +(2n-l-1)(2n-1-3);…(-l+1) (2n+l)(2n+l-2)…(l+2) 利用r函数的性质 r(z+1)=zr(z), T(2 (z+1)zr(z) 可以将c2n和c2n+1写成 +1+ 所以, Legendre方程的解就是 y(r)=coy(a)+C1y2(a), 其中
§6.2 ✡☛✞➦üý þ☞✏ ✒ 4 ✓ Öÿîúû➑■❏✁❍ ✂✄☎✆ ❑✝✞✟ó✠✡☛■❯îÙ➏ïú■❏ c2n = (2n − l − 2)(2n + l − 1) 2n(2n − 1) c2n−2 = (2n − l − 2)(2n − l − 4)(2n + l − 1)(2n + l − 3) 2n(2n − 1)(2n − 2)(2n − 3) c2n−4 = · · · = c0 (2n)!(2n − l − 2)(2n − l − 4)· · ·(−l) × (2n + l − 1)(2n + l − 3)· · ·(l + 1), c2n+1 = (2n − l − 1)(2n + l) (2n + 1)(2n) c2n−1 = (2n − l − 1)(2n − l − 3)(2n + l)(2n + l − 2) (2n + 1)(2n)(2n − 1)(2n − 2) c2n−3 = · · · = c1 (2n + 1)!(2n − l − 1)(2n − l − 3)· · ·(−l + 1) × (2n + l)(2n + l − 2)· · ·(l + 2). ✟ó Γ ☞❏❍❲✌ Γ (z + 1) = zΓ (z), Γ (z + n + 1) = (z + n)(z + n − 1)· · ·(z + 1)zΓ (z), Ù➏ç c2n ❈ c2n+1 ✍✎ c2n = 2 2n (2n)! Γ n − l 2 Γ − l 2 Γ n + l + 1 2 Γ l + 1 2 c0, c2n+1 = 2 2n (2n + 1)! Γ n − l − 1 2 Γ − l − 1 2 Γ n + 1 + l 2 Γ 1 + l 2 c1. ➎➏❯ Legendre ❋●❍▲î▼ y(x) = c0y1(x) + c1y2(x), ➓ ❽ y1(x) = X∞ n=0 2 2n (2n)! Γ n − l 2 Γ − l 2 Γ n + l + 1 2 Γ l + 1 2 x 2n