得到新同解方程组:Ax=b lI 12 In 0 bb 其中A2= (2) 0 (2 n 2 这里an=a (1) nila millau b1=b;-b1mnl2j=2,3.…,n
2 2 A x = b ( ) ( ) 得到新同解方程组: b b b b a a a a a a a A ( ) n ( ) ( ) ( ) nn ( ) n ( ) n ( ) ( ) n ( ) ( ) ( ) 2 2 2 1 1 (2) 2 2 2 2 2 2 22 1 1 1 12 1 11 2 0 0 其中 = , = a a m a m a a ( ) ( ) i i ( ) i j ( ) ij ( ) ij 1 1 1 1 1 1 1 1 1 2 1 这里 = − = 2 1 1 1 1 , 2 3 ( ) ( ) ( ) i i i , , ,n b b b m = − = i j
第二步消元:若a2≠0,对除第一行第一列外 的子阵作计算 12 13 Cl1 b 2) (2 22C 2n 2 00 33 3n b)= b2 00 3 U(u b ajaj i2 a2j ni2 6:=6r-b2 mi2 i, 1 =3
(2) 22 第二步消元: 若 ,对除第一行第一列外 0 a 的子阵作计算: 0 0 0 0 0 3 3 3 2 2 1 1 (3) 3 3 3 3 3 3 33 2 2 2 23 2 22 1 1 1 13 1 12 1 11 3 b b b b b a a a a a a a a a a a A ( ) n ( ) ( ) ( ) ( ) nn ( ) n ( ) n ( ) ( ) n ( ) ( ) ( ) n ( ) ( ) ( ) ( ) = , = aij aij m a j m ai a (2) 22 (2) i2 2 (2) i2 2 (3) (2) = − = 3 2 2 2 2 , 3 4 ( ) ( ) ( ) i i i , , ,n b b b m = − = i j
得到同解方程组A43)x=b3) C1x1+12x2+a13X3+…+am( 2X2+a23x3 2n b 3) 3) +∴ U33 X 3n Cn3x3+…+x(3)=n.(3) 若a3y≠0,则此消去过程可依次进行下去
A x b (3) (3) 得到同解方程组 = (1) (1) (1) (1) (1) 11 1 12 2 13 3 1 1 (2) (2) (2) (2) 22 2 23 3 2 2 (3) (3) (3) 33 3 3 3 ( 3 3 n n n n a x a x a x a b a x a x a b a x a b + + + + = + + + = + + = ) (3) (3) a x a b 3 nn n + + = 若 a ( 3 3 3) ≠0, 则此消去过程可依次进行下去
第n-1步消去过程后,得到等价三角方程组。 Ax=b C1x1C1x2+a13x2+….+() nxm=b (2) (2) a22 2Ta23x and x3+…+a3nxn=b amx
( ) ( ) 1 n n n A x b − = 第 步消去过程后,得到等价三角方程组。 (1) (1) (1) (1) (1) 11 1 12 2 13 3 1 1 (2) (2) (2) (2) 22 2 23 3 2 2 (3) (3) (3) 33 3 3 3 n n n n n n a x a x a x a x b a x a x a x b a x a x b + + + + = + + + = + + = ( ) ( ) n n a x b nn n n =
系数矩阵与常数项 C1C12C13 02 (2) (2 (n) 00 (3) b 计算出Am),bm)的过程称消去过程
(1) (1) (1) (1) (1) 11 12 13 1 1 (2) (2) (2) (2) 22 23 2 2 ( ) (n) (3) (3) (3) 33 3 3 ( ) ( ) 0 0 0 0 0 0 b n n n n n n nn n a a a a b a a a b A a a b a b = = , 系数矩阵与常数项: 计算出 A ( n ) , b ( n ) 的过程称消去过程