下面考虑Arg2(to)与Ag(to)之间的关系 t)=f(=0)=(to)≠0 Argw'(to)- Arg:(to)- Argf( Arg(z'(t))
e¡Ä Argz ′ (t0) Argw ′ (t0) m'X: âEܼê{, k w ′ (t0) = f ′ (z0)z ′ (t0) 6= 0, u´ Argw ′ (t0) = Argf ′ (z0) + Argz ′ (t0). = Argw ′ (t0) − Argz ′ (t0) = Argf ′ (z0). z 0 y O x Arg(z’(t0 )) (z) C (w) v O u Γ w0 Arg(w’(t0 )) 9/127
下面考虑Arg2(to)与Ag(to)之间的关系 根据复合函数求导法,有 (to0)=f(0)z'(to)≠0, 于是 Argw'(to)= Argf(2o)+ Arge(to) 即 Argw'(to)-Arga'(to)=Argf(zo
e¡Ä Argz ′ (t0) Argw ′ (t0) m'X: âEܼê{, k w ′ (t0) = f ′ (z0)z ′ (t0) 6= 0, u´ Argw ′ (t0) = Argf ′ (z0) + Argz ′ (t0). = Argw ′ (t0) − Argz ′ (t0) = Argf ′ (z0). z 0 y O x Arg(z’(t0 )) (z) C (w) v O u Γ w0 Arg(w’(t0 )) 9/127
结论1: 1)导数f(20)≠0的辐角Argf(=0)是曲线C 后在20处的转动角
(Ø 1: 1) ê f ′ (z0) 6= 0 ËÆ Argf ′ (z0) ´ C ² L w = f(z) N3 z0 ?=ÄÆ. 2) =ÄÆ C /G'. 10/127
结论1: 1)导数∫(x0)≠0的辐角Argf(20)是曲线C经 过=f(x)映射后在20处的转动角 2)转动角的大小与方向跟曲线C的形状与方向无关
(Ø 1: 1) ê f ′ (z0) 6= 0 ËÆ Argf ′ (z0) ´ C ² L w = f(z) N3 z0 ?=ÄÆ. 2) =ÄÆ C /G'. 10/127
结论1 1)导数∫(x0)≠0的辐角Argf(20)是曲线C经 过=f(x)映射后在20处的转动角 2)转动角的大小与方向跟曲线C的形状与方向无关
(Ø 1: 1) ê f ′ (z0) 6= 0 ËÆ Argf ′ (z0) ´ C ² L w = f(z) N3 z0 ?=ÄÆ. 2) =ÄÆ C /G'. 10/127