Contents Contributor contact details XIll 1 Introduction R. Ahvenainen, vTT Biotechnology, Finland Part I Types and roles of active and intelligent packaging 2 Active and intelligent packaging: an introduction R. Ahvenainen, VTT Biotechnology, Finland 2. 1 Introduction: the role of packaging in the food chain 2.2 Active packaging techniques 2.3 Intelligent packaging techniques 2. 4 Current use of novel packaging techniques 12 2.5 Current research 13 2.6 The legislative context 2.7 Consumers and novel packaging uture trends 2.9 Sources of further information and advice 18 2.10 References 3 Oxygen, ethylene and other scavengers L. Vermeiren, L. Heirlings, F. Devlieghere and J. Debevere, Ghent University, Belgium 3.1 Introduction 3.2 Oxygen scavenging technology 3.3 Selecting the right type of oxygen scavenger
Contributor contact details ............................................. xiii 1 Introduction ...................................................... 1 R. Ahvenainen, VTT Biotechnology, Finland Part I Types and roles of active and intelligent packaging ........ 3 2 Active and intelligent packaging: an introduction . . . . . .......... 5 R. Ahvenainen, VTT Biotechnology, Finland 2.1 Introduction: the role of packaging in the food chain . . . . . . . . 5 2.2 Active packaging techniques . . ............................... 6 2.3 Intelligent packaging techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Current use of novel packaging techniques . . . . . . . . . . . . . . . . . . 12 2.5 Current research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6 The legislative context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.7 Consumers and novel packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.8 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.9 Sources of further information and advice . . . . . . . . . . . . . . . . . . . 18 2.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Oxygen, ethylene and other scavengers . . . ........................ 22 L. Vermeiren, L. Heirlings, F. Devlieghere and J. Debevere, Ghent University, Belgium . . . . . ...................................... 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Oxygen scavenging technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Selecting the right type of oxygen scavenger . . . . . . . . . . . . . . . . 25 Contents
Conten 3.4 Ethylene scavenging technology 34 3.5 Carbon dioxide and other scavengers 41 3.6 Future trends 3.7 References 4 Antimicrobial food packaging JH The Unive 4.2 Antimicrobial agents 4.3 Constructing an antimicrobial packaging system 4.4 Factors affecting the effectiveness of antimicrobial 4.5 Conclusion 4.6 References 5 Non-migratory bioactive polymers(NMBP) in food packaging M. D. Steven and J. H. Hotchkiss, Cornell University, USA 5.1 Introduction 5.2 Advantages of NMBP 7127 5.3 Current limitations 5.4 Inherently bioactive synthetic polymers: types and applications 5.5 Polymers with immobilised bioactive compounds 5.6 Applications of polymers with immobilised bioactive compounds 5.7 Future trend 5.8 References 6 Time-temperature indicators(TTIs) P.S. Taoukis, National Technical University of Athens, Greece andT. P. Labuca, University of Minnesota, USA 6.1 Introduction 6.2 Defining and classifying TTIs 6.3 Requirements for TTIs 6.4 The development of TTIs 6.5 Current TTI systems 6.6 Maximising the effectiveness of TTIs 1l1 7 Using TTIs to monitor shelf-life during distribution 112 6.8 Using TTIs to optimise distribution and stock rotation 116 6.9 Future trends 121 6.10 References M. Smolander, VTT Biotechnology, Finlands 7 The use of freshness indicators in packagin 127 7.1 Introduction
3.4 Ethylene scavenging technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 Carbon dioxide and other scavengers . . . . . . . . . . . . . . . . . . . . . . . . 41 3.6 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Antimicrobial food packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 J.H. Han, The University of Manitoba, Canada 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Antimicrobial agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 Constructing an antimicrobial packaging system . . . . . . . . . . . . . 58 4.4 Factors affecting the effectiveness of antimicrobial packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Non-migratory bioactive polymers (NMBP) in food packaging . . 71 M. D. Steven and J. H. Hotchkiss, Cornell University, USA 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Advantages of NMBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3 Current limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 Inherently bioactive synthetic polymers: types and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5 Polymers with immobilised bioactive compounds . . . . . . . . . . . . 84 5.6 Applications of polymers with immobilised bioactive compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.7 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 Time-temperature indicators (TTIs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 P. S. Taoukis, National Technical University of Athens, Greece and T. P. Labuza, University of Minnesota, USA 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 Defining and classifying TTIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3 Requirements for TTIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.4 The development of TTIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.5 Current TTI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.6 Maximising the effectiveness of TTIs . . . . . . . . . . . . . . . . . . . . . . . . 111 6.7 Using TTIs to monitor shelf-life during distribution . . . . . . . . . 112 6.8 Using TTIs to optimise distribution and stock rotation . . . . . . . 116 6.9 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7 The use of freshness indicators in packaging . . . . . . . . . . . . . . . . . . . . . 127 M. Smolander, VTT Biotechnology, Finland 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 vi Contents
7.2 Compounds indicating the quality of packaged food 7.3 Freshness indicators 7.4 Pathogen indicators 136 7.5 Other methods for spoilage detection 7.6 Future trends 7.7 References 8 Packaging-flavour interactions M Del Wageningen University, The Netherlands 8.1 Introduction 8.2 Factors affecting flavour absorption 8.3 The role of the food matrix 8.4 The role of differing packaging materials 8.5 Flavour modification and sensory quality 8.6 Case study: packaging and lipid oxidation 8.7 Modelling flavour absorption 8.8 Packaging-flavour interactions and active packaging 8.9 References 9 Moisture regulation 9.2 Silica gel 173 9.4 Molecular 176 9.5 Humectant salts 178 9.6 Irreversible adsorption 179 9.7 Planning a moisture defense 9. 8 Future trends Part II Developments in modified atmosphere packaging(MAP) 10 Novel MAP applications for fresh-prepared produce B. P. F. Da, Food Science australia 10.1 Introduction 10. 2 Novel MAP gases 10.3 Testing novel MAP applications 10.4 Applying high O 2 MAP 10.6 References .204 10.7 Acknowledgements
7.2 Compounds indicating the quality of packaged food products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.3 Freshness indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.4 Pathogen indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.5 Other methods for spoilage detection . . . . . . . . . . . . . . . . . . . . . . . . 137 7.6 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8 Packaging-flavour interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 J. P. H. Linssen, R. W. G. van Willige and M. Dekker, Wageningen University, The Netherlands 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.2 Factors affecting flavour absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.3 The role of the food matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.4 The role of differing packaging materials . . . . . . . . . . . . . . . . . . . . 153 8.5 Flavour modification and sensory quality . . . . . . . . . . . . . . . . . . . . 156 8.6 Case study: packaging and lipid oxidation . . . . . . . . . . . . . . . . . . . 159 8.7 Modelling flavour absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.8 Packaging–flavour interactions and active packaging . . . . . . . . 164 8.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9 Moisture regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 T. Powers and W. J. Calvo, Multisorb Technologies, USA 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.2 Silica gel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.3 Clay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 9.4 Molecular sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.5 Humectant salts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.6 Irreversible adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 9.7 Planning a moisture defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 9.8 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Part II Developments in modified atmosphere packaging (MAP) . 187 10 Novel MAP applications for fresh-prepared produce . . . . . . . . . . . 189 B. P. F. Day, Food Science Australia 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10.2 Novel MAP gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.3 Testing novel MAP applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10.4 Applying high O 2 MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 10.5 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 10.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 10.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Contents vii
vili Contents F. Devlieghere and J. Debevere, Ghent University, Belgium aIld...208 11 MAP, product safety and nutritional quality M. Gil CEBAS-CSIC, Spain 11.1 Introduction 208 11.2 Carbon dioxide as an antimicrobial gas 208 11.3 The microbial safety of MAP: Clostridium botulinum and Listeria monocytogenes 210 11. 4 The microbial safety of MAP: Yersinia enterocolitica and Aeromonas spp 212 11. 5 The effect of MAP on the nutritional quality of non-respiring food products 215 11.6 The effect of MAP on the nutritional quality of fresh fruits and vegetables: vitamin C and carotenoid 215 11.7 The effect of MAP on the nutritional quality of fresh fruits and vegetables: phenolic compounds and glucosinolates 219 11. 8 References 222 12 Reducing pathogen risks in MAP-prepared produce D. O'Beirne and G. A. Francis, University of Limerick, Ireland 12.1 Introduction 12.2 Measuring pathogen risks 32 12.3 Factors affecting pathogen survival 242 12. 4 Improving MAP to reduce pathogen risks 12.5 Future trends 254 12.6 Sources of further information and advice 12.7 References 13 Detecting leaks in modified atmosphere packaging E. Hurme, VTT Biotechnology, Finland uction 13.2 Leakage, product safety and quality 276 13.3 Package leak detection during processing 13.4 Package leak indicators during distribution 13.5 Future trend 13.6 References 4 Combining MAP with other preservation techniques J T. Rosnes. M. Sivertsvik and T Skara, NORCONSERv, Norway 14.1 Introduction 287 14.2 Combining MAP with other preservative techniques 288 14.3 Heat treatment and irradiation 14.4 Preservatives 14.5 Other techniques 14.6 Consumer attitudes
11 MAP, product safety and nutritional quality . . . . . . . . . . . . . . . . . . . 208 F. Devlieghere and J. Debevere, Ghent University, Belgium and M. Gil CEBAS-CSIC, Spain 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 11.2 Carbon dioxide as an antimicrobial gas . . . . . . . . . . . . . . . . . . . . . . 208 11.3 The microbial safety of MAP: Clostridium botulinum and Listeria monocytogenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 11.4 The microbial safety of MAP: Yersinia enterocolitica and Aeromonas spp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.5 The effect of MAP on the nutritional quality of non-respiring food products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 11.6 The effect of MAP on the nutritional quality of fresh fruits and vegetables: vitamin C and carotenoids . . . . . . . 215 11.7 The effect of MAP on the nutritional quality of fresh fruits and vegetables: phenolic compounds and glucosinolates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 12 Reducing pathogen risks in MAP-prepared produce . . . . . . . . . . . 231 D. O’Beirne and G. A. Francis, University of Limerick, Ireland 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 12.2 Measuring pathogen risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 12.3 Factors affecting pathogen survival . . . . . . . . . . . . . . . . . . . . . . . . . . 242 12.4 Improving MAP to reduce pathogen risks . . . . . . . . . . . . . . . . . . . . 251 12.5 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 12.6 Sources of further information and advice . . . . . . . . . . . . . . . . . . . 256 12.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 13 Detecting leaks in modified atmosphere packaging . . . . . . . . . . . . . 276 E. Hurme, VTT Biotechnology, Finland 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13.2 Leakage, product safety and quality . . . . . . . . . . . . . . . . . . . . . . . . . 276 13.3 Package leak detection during processing . . . . . . . . . . . . . . . . . . . . 277 13.4 Package leak indicators during distribution . . . . . . . . . . . . . . . . . . 279 13.5 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 13.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 14 Combining MAP with other preservation techniques . . . . . . . . . . . 287 J. T. Rosnes, M. Sivertsvik and T. Ska˚ra, NORCONSERV, Norway 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 14.2 Combining MAP with other preservative techniques . . . . . . . . . 288 14.3 Heat treatment and irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 14.4 Preservatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 14.5 Other techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 14.6 Consumer attitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 viii Contents
Contents ix 14.7 Future trends 302 14.8 Sources of further information and advice 14.9 References 15 Integrating MAP with new germicidal techniques∴……….31 J. Lucas, University of Liverpool, UK 15.1 Introduction 312 15.2 Ultra violet radiation 15.3 Ozone 321 15.4 Integration with MAP 32 15.5 Future trends 15.6 References 336 16 Improving MAP through conceptual models∴…… 337 M. L. A. T. M. Hertog, Katholieke Universiteit Leuven, Belgium and N. H. Banks, Zespri Innovation Ltd, New Zealand 16.1 Introduction 6.2 Conceptual models 6.3 Mathematical models 16.4 Dedicated MAP models 351 16.5 Applying models to improve MAP 352 16.6 The risks and benefits of applying models 16.7 Future trends 16.8 Sources of further information and advice 16.9 References 357 Part Ill Novel packaging and particular products 363 17 Active packaging in practice: meat 365 C. O. Gill, Agriculture and Agri-Food Canada Introduction 17.2 Control of product appearance 17.3 Control of flavour. texture and other characteristics 17.4 Delaying microbial spoilage 369 17.5 The effects of temperature on storage life 17.6 MAP technology for meat products 372 17.7 Controlled atmosphere packaging for meat products 376 17.8 Future trends in active packaging for raw meats 17.9 References 379 18 Active packaging in practice: fish 384 M. Sivertsvik, NORCONSeRV, Nonan 18.1 Introduction 18.2 The microbiology of fish products 385
14.7 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 14.8 Sources of further information and advice . . . . . . . . . . . . . . . . . . . 303 14.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 15 Integrating MAP with new germicidal techniques . . . . . . . . . . . . . . 312 J. Lucas, University of Liverpool, UK 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 15.2 Ultra violet radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 15.3 Ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 15.4 Integration with MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 15.5 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 15.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 16 Improving MAP through conceptual models . . . . . . . . . . . . . . . . . . . . 337 M. L. A. T. M. Hertog, Katholieke Universiteit Leuven, Belgium and N. H. Banks, Zespri Innovation Ltd, New Zealand 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 16.2 Conceptual models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 16.3 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 16.4 Dedicated MAP models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 16.5 Applying models to improve MAP . . . . . . . . . . . . . . . . . . . . . . . . . . 352 16.6 The risks and benefits of applying models . . . . . . . . . . . . . . . . . . . 354 16.7 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 16.8 Sources of further information and advice . . . . . . . . . . . . . . . . . . . 356 16.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Part III Novel packaging and particular products . . . . . . . . . . . . . . . . . 363 17 Active packaging in practice: meat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 C. O. Gill, Agriculture and Agri-Food Canada 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 17.2 Control of product appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 17.3 Control of flavour, texture and other characteristics . . . . . . . . . 368 17.4 Delaying microbial spoilage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 17.5 The effects of temperature on storage life . . . . . . . . . . . . . . . . . . . 371 17.6 MAP technology for meat products . . . . . . . . . . . . . . . . . . . . . . . . . . 372 17.7 Controlled atmosphere packaging for meat products . . . . . . . . . 376 17.8 Future trends in active packaging for raw meats . . . . . . . . . . . . . 377 17.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 18 Active packaging in practice: fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 M. Sivertsvik, NORCONSERV, Norway 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 18.2 The microbiology of fish products . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 Contents ix