例7 ·某商店拟在新年期间出售一批日历画片,每 售出一千张可赢利700元。如果在新年期间 不能售出,必须削价处理,作为画片出售。 由于削价,一定可以售完,此时每千张赔损 400元。根据以往的经验,市场需求的概率 见表13-1
例7 • 某商店拟在新年期间出售一批日历画片,每 售出一千张可赢利700元。如果在新年期间 不能售出,必须削价处理,作为画片出售。 由于削价,一定可以售完,此时每千张赔损 400元。根据以往的经验,市场需求的概率 见表13-1
表13-1 里求昌r/千 而水里 每年只能订货一次,问应订购日历画片几 千张才能使获利的期望值最大?
表13-1 需求量 r (千张) 0 1 2 3 4 5 概率 P(r) = = 5 r 0 P(r) 1 0.05 0.10 0.25 0.35 0.15 0.19 每年只能订货一次,问应订购日历画片几 千张才能使获利的期望值最大?
解如果该店订货4千张,我们计算获利 的可能数值 当市场需求为(千张)获利(元) (-40×4-160 (-400×X3+700500 (-400×2+700×260 (-400×1+700×3170 (-400×0+700×4=280 (-400X0+700×4280
解 如果该店订货4千张,我们计算获利 的可能数值 当市场需求为(千张) 获利 (元) 0 (-400)×4=-1600 1 (-400)×3+700=-500 2 (-400)×2+700×2=600 3 (-400)×1+700×3=1700 4 (-400)×0+700×4=2800 5 (-400)×0+700×4=2800
订购量为4千张时获利的期望值: EC(4)=-16002×0.05 +500×010+600×0.25 +1700×0.35+2800×015 +2800×0.10 =1315元)
订购量为4千张时获利的期望值: • E[C(4)]=(-1600)×0.05 +(-500)×0.10+600×0.25 +1700×0.35+2800×0.15 +2800×0.10 =1315(元)
上述计算法及结果列于表13-2 获利期望值最大者标有()记号,为1440元。可知该 店订购300日历画片可使获利期望值最大。 茌 而 求 45获利的 里 期望值 订货量 645 31-12001-10010040210204210070140 600-5006001702802801315 2001-90020013024013501025
上述计算法及结果列于表13-2 获利期望值最大者标有(*)记号,为1440元。可知该 店订购3000张日历画片可使获利期望值最大。 获 利 订货量 0 1 2 3 4 5 获利的 期望值 0 1 2 3 4 5 0 -400 -800 -1200 -1600 -2000 0 700 300 -100 -500 -900 0 700 1400 1000 600 200 0 700 1400 2100 1700 1300 0 700 1400 2100 2800 2400 0 700 1400 2100 2800 3500 0 645 1180 1440* 1315 1025 需 求 量