概華伦与款醒硫外 (2)σ2为未知, 的置信度为1-的置信区间(X±k.u- 推导过程如下: 由于区间X±na 中含有未知参数σ,不能 直接使用此区间, 但因为S2是σ2的无偏估计,可用S=VS2替换o
(2) , 2为未知 , , / 2 直接使用此区间 由于区间 中含有未知参数 不能 z n X , , 2 2 2 但因为 S 是 的无偏估计 可用 S = S 替换 的置信度为1 −的置信区间 ( 1) . / 2 t n − n S X 推导过程如下:
概车纶与款理统外 又根据第六章定理三知 X-业~tn-1, SIn 刀ra-小是a-1-a p-a-x4a-小-1a 于是得μ的置信度为1-α的置信区间 ±a-
( 1) ( 1) 1 , / 2 / 2 = − − − + t n − n S t n X n S 即 P X 于是得 的置信度为1 − 的置信区间 ( 1) . / 2 t n − n S X ~ ( 1), / − − t n S n X 又根据第六章定理三知 ( 1) 1 , / ( 1) / 2 / 2 = − − − − − t n S n X 则 P t n
概華论与款醒硫外 例2有一大批糖果,现从中随机地取16袋,称得重 量(克)如下: 506508499503504510 497512 514505493496506502509496 设袋装糖果的重量服从正态分布,试求总体均值 4的置信度为0.95的置信区间 解a=0.05,n-1=15, 附表3-1 查t(n-1)分布表可知:t.02s(15)=2.1315, 计算得x=503.75,S=6.2022
解 有一大批糖果,现从中随机地取16袋, 称得重 量(克)如下: 514 505 493 496 506 502 509 496 506 508 499 503 504 510 497 512 设袋装糖果的重量服从正态分布, 试求总体均值 = 0.05, n −1 = 15, 查 t(n −1)分布表可知: t 0.025(15) = 计算得 x = 503.75, s = 6.2022, 的置信度为0.95的置信区间. 附表3-1 2.1315, 例2
概车纶与款理统外 得μ的置信度为95%的置信区间 503.75±6.20 2×2.1315 即 (500.4,507.1). 16 就是说估计袋装糖果重量的均值在500.4克与 507.1克之间,这个估计的可信程度为95%. 若依此区间内任一值为的近似值, 其误差不大于6.2022×2.1315×2=6.61(克. 16 这个误差的可信度为95%
得 的置信度为95%的置信区间 2.1315 16 6.2022 503.75 即 (500.4, 507.1). 就是说估计袋装糖果重量的均值在500.4克与 507.1克之间, 这个估计的可信程度为95%. 2.1315 2 6.61( ). 16 6.2022 其误差不大于 = 克 若依此区间内任一值作为的近似值, 这个误差的可信度为95%
概華伦与款程统外 2.方差σ2的置信区间 根据实标需要只介绍4未知的情况 方差σ2的置信度为1-a的置信区间 n-1)S2(n-1)S2 xa2(n-1)'a2(n-0 推导过程如下: 因为S2是σ2的无偏估计, 根据第六章第二节定理二知m-1)S 021 x2(n-1
推导过程如下: , 因为S 2 是 2的无偏估计 ~ ( 1), ( 1) 2 2 2 − − n n S 根据第六章第二节定理二知 1 方 差 2 的置信度为 − 的置信区间. ( 1) ( 1) , ( 1) ( 1) 2 1 / 2 2 2 / 2 2 − − − − − n n S n n S 根据实际需要, 只介绍 未知的情况. 2. 方差 2 的置信区间